On the genus of projective curves not contained in hypersurfaces of given degree, II

Vincenzo Di Gennaro, Giambattista Marini
{"title":"On the genus of projective curves not contained in hypersurfaces of given degree, II","authors":"Vincenzo Di Gennaro, Giambattista Marini","doi":"arxiv-2408.03715","DOIUrl":null,"url":null,"abstract":"Fix integers $r\\geq 4$ and $i\\geq 2$. Let $C$ be a non-degenerate, reduced\nand irreducible complex projective curve in $\\mathbb P^r$, of degree $d$, not\ncontained in a hypersurface of degree $\\leq i$. Let $p_a(C)$ be the arithmetic\ngenus of $C$. Continuing previous research, under the assumption $d\\gg\n\\max\\{r,i\\}$, in the present paper we exhibit a Castelnuovo bound $G_0(r;d,i)$\nfor $p_a(C)$. In general, we do not know whether this bound is sharp. However,\nwe are able to prove it is sharp when $i=2$, $r=6$ and $d\\equiv 0,3,6$ (mod\n$9$). Moreover, when $i=2$, $r\\geq 9$, $r$ is divisible by $3$, and $d\\equiv 0$\n(mod $r(r+3)/6$), we prove that if $G_0(r;d,i)$ is not sharp, then for the\nmaximal value of $p_a(C)$ there are only three possibilities. The case in which\n$i=2$ and $r$ is not divisible by $3$ has already been examined in the\nliterature. We give some information on the extremal curves.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fix integers $r\geq 4$ and $i\geq 2$. Let $C$ be a non-degenerate, reduced and irreducible complex projective curve in $\mathbb P^r$, of degree $d$, not contained in a hypersurface of degree $\leq i$. Let $p_a(C)$ be the arithmetic genus of $C$. Continuing previous research, under the assumption $d\gg \max\{r,i\}$, in the present paper we exhibit a Castelnuovo bound $G_0(r;d,i)$ for $p_a(C)$. In general, we do not know whether this bound is sharp. However, we are able to prove it is sharp when $i=2$, $r=6$ and $d\equiv 0,3,6$ (mod $9$). Moreover, when $i=2$, $r\geq 9$, $r$ is divisible by $3$, and $d\equiv 0$ (mod $r(r+3)/6$), we prove that if $G_0(r;d,i)$ is not sharp, then for the maximal value of $p_a(C)$ there are only three possibilities. The case in which $i=2$ and $r$ is not divisible by $3$ has already been examined in the literature. We give some information on the extremal curves.
关于不包含在给定度数超曲面中的投影曲线之属,II
固定整数 $r\geq 4$ 和 $i\geq 2$。让 $C$ 是在 $\mathbb P^r$ 中的一条非退化的、还原的和不可还原的复投影曲线,阶数为 $d$,不包含在一个阶数为 $\leq i$ 的超曲面中。设 $p_a(C)$ 为 $C$ 的算术源。延续之前的研究,在假设 $d\gg\max\{r,i\}$ 的条件下,本文展示了 $p_a(C)$ 的卡斯特努沃约束 $G_0(r;d,i)$。一般来说,我们不知道这个约束是否尖锐。然而,当 $i=2$,$r=6$ 和 $d\equiv 0,3,6$ (mod$9$)时,我们能够证明它是尖锐的。此外,当$i=2$,$rgeq 9$,$r$可被3$整除,且$dequiv 0$(mod $r(r+3)/6$)时,我们证明如果$G_0(r;d,i)$不尖锐,那么对于$p_a(C)$的最大值来说,只有三种可能。文献中已经研究过 i=2$ 和 $r$ 不能被 3$ 整除的情况。我们给出一些关于极值曲线的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信