{"title":"Koch Curves and Hexagonal Ring-Shaped Geometry Based Ultra-Wideband Fractal Antenna","authors":"Gurpreet Bharti, Jagtar Singh Sivia","doi":"10.1007/s11277-024-11521-5","DOIUrl":null,"url":null,"abstract":"<p>The manuscript investigates the utilization of Koch curves and hexagonal ring-shaped geometry for an ultra-wideband fractal antenna, achieved through a combination of DGS, parasitic elements, and EC-SRR. The antenna's properties are investigated without and with DGS, Parasitic element, and EC-SRR in the hexagonal ring-shaped geometries for broader band characteristics. Simulation results show that the antenna designed without DGS resonates at five distinct frequencies, while with DGS, Parasitic element, and SRR, it resonates at six frequencies. An enhanced bandwidth of 10.42 GHz (99.43%) is revealed in the final antenna geometry, and the proposed antenna resonates at six frequencies, 3.4, 5.8, 8.5, 11, 14.2, and 15 GHz, with reflection coefficients of − 24.33, − 38.10, − 28.35, − 27.39, − 32.32, and − 15.93 dB, respectively. Combining a defected ground structure, parasitic element, and EC-SRR increases frequency bands and enhances the BW and reflection coefficient. With an overall dimension of 30 mm × 24 mm, the proposed antenna is suitable for wireless applications in the frequency ranges of 2.40–3.89 GHz and 5.33–15.75 GHz. The proposed antenna is fabricated, and the results are measured. It is found that simulated and measured results are in good agreement with each other.</p>","PeriodicalId":23827,"journal":{"name":"Wireless Personal Communications","volume":"11 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Personal Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11277-024-11521-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The manuscript investigates the utilization of Koch curves and hexagonal ring-shaped geometry for an ultra-wideband fractal antenna, achieved through a combination of DGS, parasitic elements, and EC-SRR. The antenna's properties are investigated without and with DGS, Parasitic element, and EC-SRR in the hexagonal ring-shaped geometries for broader band characteristics. Simulation results show that the antenna designed without DGS resonates at five distinct frequencies, while with DGS, Parasitic element, and SRR, it resonates at six frequencies. An enhanced bandwidth of 10.42 GHz (99.43%) is revealed in the final antenna geometry, and the proposed antenna resonates at six frequencies, 3.4, 5.8, 8.5, 11, 14.2, and 15 GHz, with reflection coefficients of − 24.33, − 38.10, − 28.35, − 27.39, − 32.32, and − 15.93 dB, respectively. Combining a defected ground structure, parasitic element, and EC-SRR increases frequency bands and enhances the BW and reflection coefficient. With an overall dimension of 30 mm × 24 mm, the proposed antenna is suitable for wireless applications in the frequency ranges of 2.40–3.89 GHz and 5.33–15.75 GHz. The proposed antenna is fabricated, and the results are measured. It is found that simulated and measured results are in good agreement with each other.
期刊介绍:
The Journal on Mobile Communication and Computing ...
Publishes tutorial, survey, and original research papers addressing mobile communications and computing;
Investigates theoretical, engineering, and experimental aspects of radio communications, voice, data, images, and multimedia;
Explores propagation, system models, speech and image coding, multiple access techniques, protocols, performance evaluation, radio local area networks, and networking and architectures, etc.;
98% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again.
Wireless Personal Communications is an archival, peer reviewed, scientific and technical journal addressing mobile communications and computing. It investigates theoretical, engineering, and experimental aspects of radio communications, voice, data, images, and multimedia. A partial list of topics included in the journal is: propagation, system models, speech and image coding, multiple access techniques, protocols performance evaluation, radio local area networks, and networking and architectures.
In addition to the above mentioned areas, the journal also accepts papers that deal with interdisciplinary aspects of wireless communications along with: big data and analytics, business and economy, society, and the environment.
The journal features five principal types of papers: full technical papers, short papers, technical aspects of policy and standardization, letters offering new research thoughts and experimental ideas, and invited papers on important and emerging topics authored by renowned experts.