Ke Liu;Jiwei Wei;Jie Zou;Peng Wang;Yang Yang;Heng Tao Shen
{"title":"Improving Pre-Trained Model-Based Speech Emotion Recognition From a Low-Level Speech Feature Perspective","authors":"Ke Liu;Jiwei Wei;Jie Zou;Peng Wang;Yang Yang;Heng Tao Shen","doi":"10.1109/TMM.2024.3410133","DOIUrl":null,"url":null,"abstract":"Multi-view speech emotion recognition (SER) based on the pre-trained model has gained attention in the last two years, which shows great potential in improving the model performance in speaker-independent scenarios. However, the existing work either relies on various fine-tuning methods or uses excessive feature views with complex fusion strategies, causing the increase of complexity with limited performance benefit. In this paper, we improve multi-view SER based on the pre-trained model from the perspective of a low-level speech feature. Specifically, we forgo fine-tuning the pre-trained model and instead focus on learning effective features hidden in the low-level speech feature mel-scale frequency cepstral coefficient (MFCC). We propose a \n<bold>t</b>\nwo-\n<bold>s</b>\ntream \n<bold>p</b>\nooling \n<bold>c</b>\nhannel \n<bold>a</b>\nttention (\n<bold>TsPCA</b>\n) module to discriminatively weight the channel dimensions of the features derived from MFCC. This module enables inter-channel interaction and learning of emotion sequence information across channels. Furthermore, we design a simple but effective feature view fusion strategy to learn robust representations. In the comparison experiments, our method achieves the WA and UA of 73.97%/74.69% and 74.61%/75.66% on the IEMOCAP dataset, 97.21% and 97.11% on the Emo-DB dataset, 77.08% and 77.34% on the RAVDESS dataset, and 74.38% and 71.43% on the SAVEE dataset. Extensive experiments on the four datasets demonstrate that our method consistently surpasses existing methods and achieves a new State-of-the-Art result.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10623-10636"},"PeriodicalIF":8.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10549860/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-view speech emotion recognition (SER) based on the pre-trained model has gained attention in the last two years, which shows great potential in improving the model performance in speaker-independent scenarios. However, the existing work either relies on various fine-tuning methods or uses excessive feature views with complex fusion strategies, causing the increase of complexity with limited performance benefit. In this paper, we improve multi-view SER based on the pre-trained model from the perspective of a low-level speech feature. Specifically, we forgo fine-tuning the pre-trained model and instead focus on learning effective features hidden in the low-level speech feature mel-scale frequency cepstral coefficient (MFCC). We propose a
t
wo-
s
tream
p
ooling
c
hannel
a
ttention (
TsPCA
) module to discriminatively weight the channel dimensions of the features derived from MFCC. This module enables inter-channel interaction and learning of emotion sequence information across channels. Furthermore, we design a simple but effective feature view fusion strategy to learn robust representations. In the comparison experiments, our method achieves the WA and UA of 73.97%/74.69% and 74.61%/75.66% on the IEMOCAP dataset, 97.21% and 97.11% on the Emo-DB dataset, 77.08% and 77.34% on the RAVDESS dataset, and 74.38% and 71.43% on the SAVEE dataset. Extensive experiments on the four datasets demonstrate that our method consistently surpasses existing methods and achieves a new State-of-the-Art result.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.