Bilateral Interaction for Local-Global Collaborative Perception in Low-Light Image Enhancement

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Rui Xu;Yuezhou Li;Yuzhen Niu;Huangbiao Xu;Yuzhong Chen;Tiesong Zhao
{"title":"Bilateral Interaction for Local-Global Collaborative Perception in Low-Light Image Enhancement","authors":"Rui Xu;Yuezhou Li;Yuzhen Niu;Huangbiao Xu;Yuzhong Chen;Tiesong Zhao","doi":"10.1109/TMM.2024.3413293","DOIUrl":null,"url":null,"abstract":"Low-light image enhancement is a challenging task due to the limited visibility in dark environments. While recent advances have shown progress in integrating CNNs and Transformers, the inadequate local-global perceptual interactions still impedes their application in complex degradation scenarios. To tackle this issue, we propose BiFormer, a lightweight framework that facilitates local-global collaborative perception via bilateral interaction. Specifically, our framework introduces a core CNN-Transformer collaborative perception block (CPB) that combines local-aware convolutional attention (LCA) and global-aware recursive Transformer (GRT) to simultaneously preserve local details and ensure global consistency. To promote perceptual interaction, we adopt bilateral interaction strategy for both local and global perception, which involves local-to-global second-order interaction (SoI) in the dual-domain, as well as a mixed-channel fusion (MCF) module for global-to-local interaction. The MCF is also a highly efficient feature fusion module tailored for degraded features. Extensive experiments conducted on low-level and high-level tasks demonstrate that BiFormer achieves state-of-the-art performance. Furthermore, it exhibits a significant reduction in model parameters and computational cost compared to existing Transformer-based low-light image enhancement methods.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10792-10804"},"PeriodicalIF":8.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10555335/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Low-light image enhancement is a challenging task due to the limited visibility in dark environments. While recent advances have shown progress in integrating CNNs and Transformers, the inadequate local-global perceptual interactions still impedes their application in complex degradation scenarios. To tackle this issue, we propose BiFormer, a lightweight framework that facilitates local-global collaborative perception via bilateral interaction. Specifically, our framework introduces a core CNN-Transformer collaborative perception block (CPB) that combines local-aware convolutional attention (LCA) and global-aware recursive Transformer (GRT) to simultaneously preserve local details and ensure global consistency. To promote perceptual interaction, we adopt bilateral interaction strategy for both local and global perception, which involves local-to-global second-order interaction (SoI) in the dual-domain, as well as a mixed-channel fusion (MCF) module for global-to-local interaction. The MCF is also a highly efficient feature fusion module tailored for degraded features. Extensive experiments conducted on low-level and high-level tasks demonstrate that BiFormer achieves state-of-the-art performance. Furthermore, it exhibits a significant reduction in model parameters and computational cost compared to existing Transformer-based low-light image enhancement methods.
低照度图像增强中的局部-全局协同感知双边互动
由于黑暗环境中的可见度有限,弱光图像增强是一项具有挑战性的任务。虽然最近的进展表明,CNN 和变换器的集成取得了进展,但局部-全局感知交互的不足仍然阻碍了它们在复杂降解场景中的应用。为解决这一问题,我们提出了 BiFormer,这是一种轻量级框架,可通过双边互动促进局部-全局协同感知。具体来说,我们的框架引入了一个核心的 CNN-Transformer 协作感知块(CPB),它结合了局部感知卷积注意(LCA)和全局感知递归变换器(GRT),可同时保留局部细节并确保全局一致性。为了促进感知交互,我们对本地和全局感知都采用了双边交互策略,其中包括双域中本地到全局的二阶交互(SoI),以及用于全局到本地交互的混合通道融合(MCF)模块。MCF 也是为降级特征量身定制的高效特征融合模块。在低级和高级任务中进行的大量实验表明,BiFormer 实现了最先进的性能。此外,与现有的基于 Transformer 的低照度图像增强方法相比,它还显著降低了模型参数和计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信