Yuxuan Luo;Runmin Cong;Xialei Liu;Horace Ho Shing Ip;Sam Kwong
{"title":"Modeling Inner- and Cross-Task Contrastive Relations for Continual Image Classification","authors":"Yuxuan Luo;Runmin Cong;Xialei Liu;Horace Ho Shing Ip;Sam Kwong","doi":"10.1109/TMM.2024.3414277","DOIUrl":null,"url":null,"abstract":"Existing continual image classification methods demonstrate that samples from all sequences of continual classification tasks contain common (task-invariant) features and class-specific (task-variant) features that can be decoupled for classification tasks. However, the existing feature decomposition strategies only focus on individual tasks while neglecting the essential cues that the relationship between different tasks can provide, thereby hindering the improvement of continual image classification results. To address this issue, we propose an Adversarial Contrastive Continual Learning (ACCL) method that decouples task-invariant and task-variant features by constructing all-round, multi-level contrasts on sample pairs within individual tasks or from different tasks. Specifically, three constraints on the distribution of task-invariant and task-variant features are included, i.e., task-invariant features across different tasks should remain consistent, task-variant features should exhibit differences, and task-invariant and task-variant features should differ from each other. At the same time, we also design an effective contrastive replay strategy to make full use of the replay samples to participate in the construction of sample pairs, further alleviating the forgetting problem, and modeling cross-task relationships. Through extensive experiments on continual image classification tasks on CIFAR100, MiniImageNet and TinyImageNet, we show the superiority of our proposed strategy, improving the accuracy and with better visualized outcomes.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10842-10853"},"PeriodicalIF":8.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10557156/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Existing continual image classification methods demonstrate that samples from all sequences of continual classification tasks contain common (task-invariant) features and class-specific (task-variant) features that can be decoupled for classification tasks. However, the existing feature decomposition strategies only focus on individual tasks while neglecting the essential cues that the relationship between different tasks can provide, thereby hindering the improvement of continual image classification results. To address this issue, we propose an Adversarial Contrastive Continual Learning (ACCL) method that decouples task-invariant and task-variant features by constructing all-round, multi-level contrasts on sample pairs within individual tasks or from different tasks. Specifically, three constraints on the distribution of task-invariant and task-variant features are included, i.e., task-invariant features across different tasks should remain consistent, task-variant features should exhibit differences, and task-invariant and task-variant features should differ from each other. At the same time, we also design an effective contrastive replay strategy to make full use of the replay samples to participate in the construction of sample pairs, further alleviating the forgetting problem, and modeling cross-task relationships. Through extensive experiments on continual image classification tasks on CIFAR100, MiniImageNet and TinyImageNet, we show the superiority of our proposed strategy, improving the accuracy and with better visualized outcomes.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.