Haochen Liu, Bei Huang, Guipin Ke, Zheng Cao, Junfeng Cheng, Dong Wang, Fangli Sun, Wenzhong Ma, Chunlin Liu
{"title":"Facile preparation and performance of flexible sensors based on polyacrylamide/carboxymethylchitosan/tannin acid hydrogels","authors":"Haochen Liu, Bei Huang, Guipin Ke, Zheng Cao, Junfeng Cheng, Dong Wang, Fangli Sun, Wenzhong Ma, Chunlin Liu","doi":"10.1002/pol.20240292","DOIUrl":null,"url":null,"abstract":"<p>Hydrogel flexible sensors are gaining significant interest due to their distinct biocompatibility, flexibility, and unique features of being adjustable and injectable, but there are still problems of poor self-healing performance and low conductivity in the current stage of research. In this work, a prefabricated blending method was used to construct a dual-network system using polyacrylamide (PAM), carboxymethyl chitosan (CMCS), and tannin acid (TA), and ferric ions (Fe<sup>3+</sup>) were introduced to apply ionically conductive organic hydrogels to flexible sensors. The PAM/CMCS-Fe<sup>3+</sup>/TA hydrogels have good fatigue resistance and self-healing properties, and their conductivity is as high as 6.42 S/m. This hydrogel-based sensor for strain sensing purpose offers a lot of promise for flexible sensor applications since it can provide steady, dependable, and repeatable electrical impulses.</p>","PeriodicalId":16888,"journal":{"name":"Journal of Polymer Science","volume":"62 22","pages":"4953-4965"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20240292","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogel flexible sensors are gaining significant interest due to their distinct biocompatibility, flexibility, and unique features of being adjustable and injectable, but there are still problems of poor self-healing performance and low conductivity in the current stage of research. In this work, a prefabricated blending method was used to construct a dual-network system using polyacrylamide (PAM), carboxymethyl chitosan (CMCS), and tannin acid (TA), and ferric ions (Fe3+) were introduced to apply ionically conductive organic hydrogels to flexible sensors. The PAM/CMCS-Fe3+/TA hydrogels have good fatigue resistance and self-healing properties, and their conductivity is as high as 6.42 S/m. This hydrogel-based sensor for strain sensing purpose offers a lot of promise for flexible sensor applications since it can provide steady, dependable, and repeatable electrical impulses.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology.