Holomorphic maps acting as Kobayashi isometries on a family of geodesics

IF 1 3区 数学 Q1 MATHEMATICS
Filippo Bracci, Łukasz Kosiński, Włodzimierz Zwonek
{"title":"Holomorphic maps acting as Kobayashi isometries on a family of geodesics","authors":"Filippo Bracci, Łukasz Kosiński, Włodzimierz Zwonek","doi":"10.1007/s00209-024-03569-7","DOIUrl":null,"url":null,"abstract":"<p>Consider a holomorphic map <span>\\(F: D \\rightarrow G\\)</span> between two domains in <span>\\({{\\mathbb {C}}}^N\\)</span>. Let <span>\\({\\mathscr {F}}\\)</span> denote a family of geodesics for the Kobayashi distance, such that <i>F</i> acts as an isometry on each element of <span>\\({\\mathscr {F}}\\)</span>. This paper is dedicated to characterizing the scenarios in which the aforementioned condition implies that <i>F</i> is a biholomorphism. Specifically, we establish this when <i>D</i> is a complete hyperbolic domain, and <span>\\({\\mathscr {F}}\\)</span> comprises all geodesic segments originating from a specific point. Another case is when <i>D</i> and <i>G</i> are <span>\\(C^{2+\\alpha }\\)</span>-smooth bounded pseudoconvex domains, and <span>\\({\\mathscr {F}}\\)</span> consists of all geodesic rays converging at a designated boundary point of <i>D</i>. Furthermore, we provide examples to demonstrate that these assumptions are essentially optimal.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03569-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a holomorphic map \(F: D \rightarrow G\) between two domains in \({{\mathbb {C}}}^N\). Let \({\mathscr {F}}\) denote a family of geodesics for the Kobayashi distance, such that F acts as an isometry on each element of \({\mathscr {F}}\). This paper is dedicated to characterizing the scenarios in which the aforementioned condition implies that F is a biholomorphism. Specifically, we establish this when D is a complete hyperbolic domain, and \({\mathscr {F}}\) comprises all geodesic segments originating from a specific point. Another case is when D and G are \(C^{2+\alpha }\)-smooth bounded pseudoconvex domains, and \({\mathscr {F}}\) consists of all geodesic rays converging at a designated boundary point of D. Furthermore, we provide examples to demonstrate that these assumptions are essentially optimal.

作为小林等距线作用于测地线族的全态映射
考虑在 \({{\mathbb {C}}^N\) 中的两个域之间有一个全形映射(F: D \rightarrow G\ )。让 \({\mathscr {F}}\ 表示小林距离的测地线族,使得 F 在 \({\mathscr {F}}\) 的每个元素上都是等距的。)本文致力于描述上述条件意味着 F 是双holomorphism 的情形。具体地说,当 D 是一个完整的双曲域,且 \({\mathscr {F}}\) 包含了从一个特定点出发的所有大地线段时,我们就可以确定这一点。另一种情况是当 D 和 G 是 \(C^{2+\alpha }\)-smooth bounded pseudoconvex domains 时,并且 \({\mathscr {F}}\) 由汇聚到 D 的指定边界点的所有大地射线组成。此外,我们还提供了一些例子来证明这些假设本质上是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信