Yusuke Tokuhara, Tatsuya Akutsu, Jean-Marc Schwartz, Jose C. Nacher
{"title":"A practically efficient algorithm for identifying critical control proteins in directed probabilistic biological networks","authors":"Yusuke Tokuhara, Tatsuya Akutsu, Jean-Marc Schwartz, Jose C. Nacher","doi":"10.1038/s41540-024-00411-y","DOIUrl":null,"url":null,"abstract":"<p>Network controllability is unifying the traditional control theory with the structural network information rooted in many large-scale biological systems of interest, from intracellular networks in molecular biology to brain neuronal networks. In controllability approaches, the set of minimum driver nodes is not unique, and critical nodes are the most important control elements because they appear in all possible solution sets. On the other hand, a common but largely unexplored feature in network control approaches is the probabilistic failure of edges or the uncertainty in the determination of interactions between molecules. This is particularly true when directed probabilistic interactions are considered. Until now, no efficient algorithm existed to determine critical nodes in probabilistic directed networks. Here we present a probabilistic control model based on a minimum dominating set framework that integrates the probabilistic nature of directed edges between molecules and determines the critical control nodes that drive the entire network functionality. The proposed algorithm, combined with the developed mathematical tools, offers practical efficiency in determining critical control nodes in large probabilistic networks. The method is then applied to the human intracellular signal transduction network revealing that critical control nodes are associated with important biological features and perturbed sets of genes in human diseases, including SARS-CoV-2 target proteins and rare disorders. We believe that the proposed methodology can be useful to investigate multiple biological systems in which directed edges are probabilistic in nature, both in natural systems or when determined with large uncertainties in-silico.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00411-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Network controllability is unifying the traditional control theory with the structural network information rooted in many large-scale biological systems of interest, from intracellular networks in molecular biology to brain neuronal networks. In controllability approaches, the set of minimum driver nodes is not unique, and critical nodes are the most important control elements because they appear in all possible solution sets. On the other hand, a common but largely unexplored feature in network control approaches is the probabilistic failure of edges or the uncertainty in the determination of interactions between molecules. This is particularly true when directed probabilistic interactions are considered. Until now, no efficient algorithm existed to determine critical nodes in probabilistic directed networks. Here we present a probabilistic control model based on a minimum dominating set framework that integrates the probabilistic nature of directed edges between molecules and determines the critical control nodes that drive the entire network functionality. The proposed algorithm, combined with the developed mathematical tools, offers practical efficiency in determining critical control nodes in large probabilistic networks. The method is then applied to the human intracellular signal transduction network revealing that critical control nodes are associated with important biological features and perturbed sets of genes in human diseases, including SARS-CoV-2 target proteins and rare disorders. We believe that the proposed methodology can be useful to investigate multiple biological systems in which directed edges are probabilistic in nature, both in natural systems or when determined with large uncertainties in-silico.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.