The $L_p$ Minkowski problem for the electrostatic $\mathfrak{p}$-capacity for $p \gt 1$ and $\mathfrak{p} \geqslant n^\ast$

IF 0.5 4区 数学 Q3 MATHEMATICS
Xinbao Lu, Ge Xiong, Jiawei Xiong
{"title":"The $L_p$ Minkowski problem for the electrostatic $\\mathfrak{p}$-capacity for $p \\gt 1$ and $\\mathfrak{p} \\geqslant n^\\ast$","authors":"Xinbao Lu, Ge Xiong, Jiawei Xiong","doi":"10.4310/ajm.2024.v28.n1.a2","DOIUrl":null,"url":null,"abstract":"The existence and uniqueness of solutions to the $L_p$ Minkowski problem for $\\mathfrak{p}$-capacity for $p \\gt 1$ and $\\mathfrak{p} \\geqslant n$ are proved. For this task, the estimation of $\\mathfrak{p}$−capacitary measure controlled below by the surface area measure is achieved. This work is a sequel to the results $\\href{https://doi.org/10.4310/jdg/1606964418}{[45]}$ for $p \\gt 1$ and $1 \\lt \\mathfrak{p} \\lt n$.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2024.v28.n1.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The existence and uniqueness of solutions to the $L_p$ Minkowski problem for $\mathfrak{p}$-capacity for $p \gt 1$ and $\mathfrak{p} \geqslant n$ are proved. For this task, the estimation of $\mathfrak{p}$−capacitary measure controlled below by the surface area measure is achieved. This work is a sequel to the results $\href{https://doi.org/10.4310/jdg/1606964418}{[45]}$ for $p \gt 1$ and $1 \lt \mathfrak{p} \lt n$.
对于 $p \gt 1$ 和 $\mathfrak{p} 的静电 $mathfrak{p}$ 容量的 $L_p$ Minkowski 问题\gqslant n^\ast$
针对 $p \gt 1$ 和 $\mathfrak{p} 的 $L_p$ Minkowski 问题,证明了 $\mathfrak{p}$-capacity 的解的存在性和唯一性。\n$ 时的 $mathfrak{p}$ 容量问题。为此,我们实现了由表面积度量控制的 $\mathfrak{p}$ 容积度量的估计。这项工作是针对 $p \gt 1$ 和 $1 \lt \mathfrak{p}$ 的结果 $\href{https://doi.org/10.4310/jdg/1606964418}{[45]}$ 的续篇。\lt n$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信