Unraveling the dynamics of magnetization in topological insulator-ferromagnet heterostructures via spin-orbit torque

Taekoo Oh, Naoto Nagaosa
{"title":"Unraveling the dynamics of magnetization in topological insulator-ferromagnet heterostructures via spin-orbit torque","authors":"Taekoo Oh, Naoto Nagaosa","doi":"10.1038/s44306-024-00045-0","DOIUrl":null,"url":null,"abstract":"Spin–orbit coupling is a relativistic effect coupling the orbital angular momentum with the spin, which determines the physical properties of condensed matter. For instance, the spin–orbit coupling strongly influences spin dynamics, opening the possibility for promising applications. The topological insulator–ferromagnet heterostructure is a typical example exhibiting spin dynamics driven by current-induced spin–orbit torque. Recent observations of the sign flip of Hall conductivity imply that the spin–orbit torque is strong enough to flip magnetization within this heterostructure. Motivated by this, our study elucidates the conditions governing spin flips by studying the magnetization dynamics. We establish that the interplay between spin-anisotropy and spin–orbit torque plays a crucial role in the magnetization dynamics. Furthermore, we categorize various modes of magnetization dynamics, constructing a comprehensive phase diagram across distinct energy scales, damping constants, and applied frequencies. We also consider the effect of a magnetic field on the magnetization dynamics. This research not only offers insights into controlling spin direction but also charts a new pathway to the practical application of spin–orbit coupled systems.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00045-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44306-024-00045-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spin–orbit coupling is a relativistic effect coupling the orbital angular momentum with the spin, which determines the physical properties of condensed matter. For instance, the spin–orbit coupling strongly influences spin dynamics, opening the possibility for promising applications. The topological insulator–ferromagnet heterostructure is a typical example exhibiting spin dynamics driven by current-induced spin–orbit torque. Recent observations of the sign flip of Hall conductivity imply that the spin–orbit torque is strong enough to flip magnetization within this heterostructure. Motivated by this, our study elucidates the conditions governing spin flips by studying the magnetization dynamics. We establish that the interplay between spin-anisotropy and spin–orbit torque plays a crucial role in the magnetization dynamics. Furthermore, we categorize various modes of magnetization dynamics, constructing a comprehensive phase diagram across distinct energy scales, damping constants, and applied frequencies. We also consider the effect of a magnetic field on the magnetization dynamics. This research not only offers insights into controlling spin direction but also charts a new pathway to the practical application of spin–orbit coupled systems.

Abstract Image

通过自旋轨道力矩揭示拓扑绝缘体-铁磁体异质结构中的磁化动态
自旋轨道耦合是一种将轨道角动量与自旋耦合在一起的相对论效应,它决定了凝聚态物质的物理特性。例如,自旋轨道耦合强烈影响自旋动力学,为前景广阔的应用提供了可能。拓扑绝缘体-铁磁体异质结构就是一个典型的例子,它展示了由电流诱导的自旋轨道力矩驱动的自旋动力学。最近对霍尔电导率符号翻转的观察表明,自旋轨道力矩的强度足以使这种异质结构内部的磁化发生翻转。受此启发,我们的研究通过对磁化动态的研究,阐明了支配自旋翻转的条件。我们发现,自旋各向异性和自旋轨道力矩之间的相互作用在磁化动力学中起着至关重要的作用。此外,我们还对磁化动力学的各种模式进行了分类,构建了一个跨越不同能量尺度、阻尼常数和应用频率的综合相图。我们还考虑了磁场对磁化动力学的影响。这项研究不仅为控制自旋方向提供了见解,还为自旋轨道耦合系统的实际应用开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信