Oblique spin injection to graphene via geometry controlled magnetic nanowires

Jesus C. Toscano-Figueroa, Daniel Burrow, Victor H. Guarochico-Moreira, Chengkun Xie, Thomas Thomson, Irina V. Grigorieva, Ivan J. Vera-Marun
{"title":"Oblique spin injection to graphene via geometry controlled magnetic nanowires","authors":"Jesus C. Toscano-Figueroa, Daniel Burrow, Victor H. Guarochico-Moreira, Chengkun Xie, Thomas Thomson, Irina V. Grigorieva, Ivan J. Vera-Marun","doi":"10.1038/s44306-024-00043-2","DOIUrl":null,"url":null,"abstract":"We exploit the geometry of magnetic nanowires, which define 1D contacts to an encapsulated graphene channel, to introduce an out-of-plane component in the polarisation of spin carriers. By design, the magnetic nanowires traverse the angled sides of the 2D material heterostructure. Consequently, the easy axis of the nanowires is inclined, and so the local magnetisation is oblique at the injection point. As a result, when performing non-local spin valve measurements we simultaneously observe both switching and spin precession phenomena, implying the spin population possesses both in-plane and out-of-plane polarisation components. By comparing the relative magnitudes of these components, we quantify the angle of the total spin polarisation vector. The extracted angle is consistent with the angle of the nanowire at the graphene interface, evidencing that the effect is a consequence of the device geometry. This simple method of spin-based vector magnetometry provides an alternative technique to define the spin polarisation in 2D spintronic devices.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00043-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44306-024-00043-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We exploit the geometry of magnetic nanowires, which define 1D contacts to an encapsulated graphene channel, to introduce an out-of-plane component in the polarisation of spin carriers. By design, the magnetic nanowires traverse the angled sides of the 2D material heterostructure. Consequently, the easy axis of the nanowires is inclined, and so the local magnetisation is oblique at the injection point. As a result, when performing non-local spin valve measurements we simultaneously observe both switching and spin precession phenomena, implying the spin population possesses both in-plane and out-of-plane polarisation components. By comparing the relative magnitudes of these components, we quantify the angle of the total spin polarisation vector. The extracted angle is consistent with the angle of the nanowire at the graphene interface, evidencing that the effect is a consequence of the device geometry. This simple method of spin-based vector magnetometry provides an alternative technique to define the spin polarisation in 2D spintronic devices.

Abstract Image

通过几何控制磁性纳米线向石墨烯斜向注入自旋
我们利用磁性纳米线的几何形状(它定义了与封装石墨烯通道的一维接触),在自旋载流子的极化中引入了平面外分量。根据设计,磁性纳米线穿过二维材料异质结构的斜边。因此,纳米线的易轴是倾斜的,所以注入点的局部磁化是斜的。因此,在进行非局部自旋阀测量时,我们可以同时观察到开关和自旋前驱现象,这意味着自旋群具有面内和面外极化成分。通过比较这些分量的相对大小,我们可以量化总自旋极化矢量的角度。提取的角度与石墨烯界面上纳米线的角度一致,证明这种效应是器件几何形状的结果。这种基于自旋矢量磁力测量的简单方法为确定二维自旋电子器件中的自旋极化提供了另一种技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信