Wara Dyah Pita Rengga, Widodo Wahyu Purwanto, Mahmud Sudibandriyo, Mohammad Nasikin
{"title":"Mesopore Catalytic Activated-Carbon to Reduce Harmful Gases Indoors: Adsorption, Catalytic Oxidation, and Prediction Mechanism","authors":"Wara Dyah Pita Rengga, Widodo Wahyu Purwanto, Mahmud Sudibandriyo, Mohammad Nasikin","doi":"10.1002/tqem.22294","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Modification of local bamboo-based catalytic activated carbon with metallic Ag can produce mesopore and micropore types, with a mesopore content of 86%. One of the best ways to reduce formaldehyde concentrations is through catalytic adsorption. In combination with Ag nanoparticle catalyst, formaldehyde adsorption capacity is improved. Adsorption and oxidation reaction experiments are performed in a fixed bed column (<i>d</i><sub>i</sub> = 10 mm, length = 90 mm). The increase in formaldehyde adsorption associated with the reaction rate of formaldehyde oxidation by metallic Ag is 51 g/mmol. The oxidation reaction of Ag nanoparticles is a bimolecular reaction based on the Langmuir–Hinshelwood mechanism. Formaldehyde can be reduced by 59% and 41% through the role of adsorption and support of catalytic oxidation, respectively. Additionally, harmless gases such as CO<sub>2</sub> and H<sub>2</sub>O are produced within the column.</p>\n </div>","PeriodicalId":35327,"journal":{"name":"Environmental Quality Management","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Quality Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tqem.22294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Modification of local bamboo-based catalytic activated carbon with metallic Ag can produce mesopore and micropore types, with a mesopore content of 86%. One of the best ways to reduce formaldehyde concentrations is through catalytic adsorption. In combination with Ag nanoparticle catalyst, formaldehyde adsorption capacity is improved. Adsorption and oxidation reaction experiments are performed in a fixed bed column (di = 10 mm, length = 90 mm). The increase in formaldehyde adsorption associated with the reaction rate of formaldehyde oxidation by metallic Ag is 51 g/mmol. The oxidation reaction of Ag nanoparticles is a bimolecular reaction based on the Langmuir–Hinshelwood mechanism. Formaldehyde can be reduced by 59% and 41% through the role of adsorption and support of catalytic oxidation, respectively. Additionally, harmless gases such as CO2 and H2O are produced within the column.
期刊介绍:
Four times a year, this practical journal shows you how to improve environmental performance and exceed voluntary standards such as ISO 14000. In each issue, you"ll find in-depth articles and the most current case studies of successful environmental quality improvement efforts -- and guidance on how you can apply these goals to your organization. Written by leading industry experts and practitioners, Environmental Quality Management brings you innovative practices in Performance Measurement...Life-Cycle Assessments...Safety Management... Environmental Auditing...ISO 14000 Standards and Certification..."Green Accounting"...Environmental Communication...Sustainable Development Issues...Environmental Benchmarking...Global Environmental Law and Regulation.