Pooria Tabesh Mehr, Konstantinos Koufos, Karim El Haloui, Mehrdad Dianati
{"title":"Low-complexity channel estimation for V2X systems using feed-forward neural networks","authors":"Pooria Tabesh Mehr, Konstantinos Koufos, Karim El Haloui, Mehrdad Dianati","doi":"10.1049/cmu2.12788","DOIUrl":null,"url":null,"abstract":"<p>In vehicular communications, channel estimation is a complex problem due to the joint time–frequency selectivity of wireless propagation channels. To this end, several signal processing techniques as well as approaches based on neural networks have been proposed to address this issue. Due to the highly dynamic and random nature of vehicular communication environments, precise characterization of temporal correlation across a received data sequence can enable more accurate channel estimation. This paper proposes a new pilot constellation scheme in combination with a small feed-forward neural network to improve the accuracy of channel estimation in V2X systems while keeping low the implementation complexity. The performance is evaluated in typical vehicular channels using simulated BER curves, and it is found superior to traditional channel estimation methods and state-of-the-art neural-network-based implementations such as feed-forward and super-resolution. It is illustrated that the improvement becomes pronounced for small subcarrier spacings (or low 5G numerologies); hence, this paper contributes to the development of more reliable mobile services across rapidly varying vehicular communication channels with rich multi-path interference.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 13","pages":"789-798"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12788","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12788","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In vehicular communications, channel estimation is a complex problem due to the joint time–frequency selectivity of wireless propagation channels. To this end, several signal processing techniques as well as approaches based on neural networks have been proposed to address this issue. Due to the highly dynamic and random nature of vehicular communication environments, precise characterization of temporal correlation across a received data sequence can enable more accurate channel estimation. This paper proposes a new pilot constellation scheme in combination with a small feed-forward neural network to improve the accuracy of channel estimation in V2X systems while keeping low the implementation complexity. The performance is evaluated in typical vehicular channels using simulated BER curves, and it is found superior to traditional channel estimation methods and state-of-the-art neural-network-based implementations such as feed-forward and super-resolution. It is illustrated that the improvement becomes pronounced for small subcarrier spacings (or low 5G numerologies); hence, this paper contributes to the development of more reliable mobile services across rapidly varying vehicular communication channels with rich multi-path interference.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf