Experimental Constraints on the Origin of the Lunar High-Ti Basalts

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
C. P. Haupt, C. J. Renggli, A. Rohrbach, J. Berndt, S. Klemme
{"title":"Experimental Constraints on the Origin of the Lunar High-Ti Basalts","authors":"C. P. Haupt,&nbsp;C. J. Renggli,&nbsp;A. Rohrbach,&nbsp;J. Berndt,&nbsp;S. Klemme","doi":"10.1029/2023JE008239","DOIUrl":null,"url":null,"abstract":"<p>High-pressure and high-temperature experiments were conducted to simulate melting of a hybrid cumulate lunar mantle. The experimental results show that intermediate to high-Ti lunar pyroclastic glasses (&gt;6 wt% TiO<sub>2</sub>) can be produced by partial melting of lunar cumulates. High-Ti basalts are generated when the ilmenite/clinopyroxene ratios in the lunar mantle cumulates are between 1/1 and 4/1, depending on the degree of melting. The presence of an urKREEP component in the mantle cumulate strongly influences Al<sub>2</sub>O<sub>3</sub>/CaO of the melts. The experiments provide strong evidence for the model that the compositional diversity of lunar basalts is a consequence of a gravitational overturn of the lunar interior after the lunar magma ocean had solidified. Ilmenite/clinopyroxene in the cumulate mantle, which generates high-Ti melts at partial melting, do not comprise the ratios in ilmenite-bearing cumulates (IBC), which crystallized after ∼90% solidification of the lunar magma ocean and indicate local accumulation of ilmenite in the overturned lunar mantle. However, to fully match the natural composition of the most primitive lunar samples, secondary processes such as assimilation are still required.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 8","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JE008239","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JE008239","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

High-pressure and high-temperature experiments were conducted to simulate melting of a hybrid cumulate lunar mantle. The experimental results show that intermediate to high-Ti lunar pyroclastic glasses (>6 wt% TiO2) can be produced by partial melting of lunar cumulates. High-Ti basalts are generated when the ilmenite/clinopyroxene ratios in the lunar mantle cumulates are between 1/1 and 4/1, depending on the degree of melting. The presence of an urKREEP component in the mantle cumulate strongly influences Al2O3/CaO of the melts. The experiments provide strong evidence for the model that the compositional diversity of lunar basalts is a consequence of a gravitational overturn of the lunar interior after the lunar magma ocean had solidified. Ilmenite/clinopyroxene in the cumulate mantle, which generates high-Ti melts at partial melting, do not comprise the ratios in ilmenite-bearing cumulates (IBC), which crystallized after ∼90% solidification of the lunar magma ocean and indicate local accumulation of ilmenite in the overturned lunar mantle. However, to fully match the natural composition of the most primitive lunar samples, secondary processes such as assimilation are still required.

Abstract Image

月球高钛玄武岩起源的实验约束
进行了高压和高温实验,以模拟混合积层月幔的熔化。实验结果表明,中高钛月球火成岩玻璃(TiO2 含量为 6 wt%)可通过部分熔融月球积层而产生。当月幔积云中钛铁矿/菱镁矿的比例在1/1到4/1之间时,就会产生高钛玄武岩,具体取决于熔化程度。地幔积云中 urKREEP 成分的存在对熔体的 Al2O3/CaO 有很大影响。实验为月球玄武岩成分多样性是月球内部重力翻转的结果这一模型提供了强有力的证据。积层地幔中的钛铁矿/霞石在部分熔化时产生高钛熔体,但与含钛铁矿积层(IBC)中的比例不符,后者是在月球岩浆海凝固90%以后结晶的,表明钛铁矿在翻转的月球地幔中局部堆积。然而,要完全符合最原始月球样本的自然成分,还需要同化等次生过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信