{"title":"Surface Damage Detection and Localization for Bridge Visual Inspection Based on Deep Learning and 3D Reconstruction","authors":"Youhao Ni, Jianxiao Mao, Hao Wang, Zhuo Xi, Zhengyi Chen","doi":"10.1155/2024/9988793","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In the process of infrastructure construction in recent decades, there exist millions of bridges in service that need safety inspection for performance assessment. Currently, computer vision and deep learning-based surface damage detection methods can achieve classification and localization of damages at the image level, but achieving precise localization in three-dimensional space is more challenging. To overcome aforementioned limitations, this study proposes a three-stage method of bridge surface damage detection and localization based on three-dimensional (3D) reconstruction. In stage 1, the UAV flight path planning of the bridge is carried out, and the 3D reconstruction model of the bridge is formed based on the structure from motion (SfM) algorithm. In stage 2, you-only-look-once version 7 (YOLOv7) network is adopted to detect multiple damages, and scale invariant feature transform (SIFT) detector is used to match the identical damage in image level. In stage 3, based on solution of epipolar geometric constraint, the matched damage was mapped to the 3D model, and the 3D damage localization is realized and visualized. The quality of the 3D model has been analyzed, and it is recommended that inspection distance is determined at 20 m. Moreover, the reconstruction model of bridges achieves centimeter-level positioning accuracy, and the positioning accuracy of damage reaches the meter level. The mapped model effectively showcases surface damages, providing bridge owners with intuitive insights.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9988793","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9988793","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the process of infrastructure construction in recent decades, there exist millions of bridges in service that need safety inspection for performance assessment. Currently, computer vision and deep learning-based surface damage detection methods can achieve classification and localization of damages at the image level, but achieving precise localization in three-dimensional space is more challenging. To overcome aforementioned limitations, this study proposes a three-stage method of bridge surface damage detection and localization based on three-dimensional (3D) reconstruction. In stage 1, the UAV flight path planning of the bridge is carried out, and the 3D reconstruction model of the bridge is formed based on the structure from motion (SfM) algorithm. In stage 2, you-only-look-once version 7 (YOLOv7) network is adopted to detect multiple damages, and scale invariant feature transform (SIFT) detector is used to match the identical damage in image level. In stage 3, based on solution of epipolar geometric constraint, the matched damage was mapped to the 3D model, and the 3D damage localization is realized and visualized. The quality of the 3D model has been analyzed, and it is recommended that inspection distance is determined at 20 m. Moreover, the reconstruction model of bridges achieves centimeter-level positioning accuracy, and the positioning accuracy of damage reaches the meter level. The mapped model effectively showcases surface damages, providing bridge owners with intuitive insights.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.