Bingyi Xie, Honghui Xu, Daehee Seo, DongMyung Shin, Zhipeng Cai
{"title":"KDGAN: Knowledge distillation-based model copyright protection for secure and communication-efficient model publishing","authors":"Bingyi Xie, Honghui Xu, Daehee Seo, DongMyung Shin, Zhipeng Cai","doi":"10.1049/cmu2.12795","DOIUrl":null,"url":null,"abstract":"<p>Deep learning-based models have become ubiquitous across a wide range of applications, including computer vision, natural language processing, and robotics. Despite their efficacy, one of the significant challenges associated with deep neural network (DNN) models is the potential risk of copyright leakage due to the inherent vulnerability of the entire model architecture and the communication burden of the large models during publishing. So far, it is still challenging for us to safeguard the intellectual property rights of these DNN models while reducing the communication time during model publishing. To this end, this paper introduces a novel approach using knowledge distillation techniques aimed at training a surrogate model to stand in for the original DNN model. To be specific, a knowledge distillation generative adversarial network (KDGAN) model is proposed to train a student model capable of achieving remarkable performance levels while simultaneously safeguarding the copyright integrity of the original large teacher model and improving communication efficiency during model publishing. Herein, comprehensive experiments are conducted to showcase the efficacy of model copyright protection, communication-efficient model publishing, and the superiority of the proposed KDGAN model over other copyright protection mechanisms.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 14","pages":"860-868"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12795","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12795","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning-based models have become ubiquitous across a wide range of applications, including computer vision, natural language processing, and robotics. Despite their efficacy, one of the significant challenges associated with deep neural network (DNN) models is the potential risk of copyright leakage due to the inherent vulnerability of the entire model architecture and the communication burden of the large models during publishing. So far, it is still challenging for us to safeguard the intellectual property rights of these DNN models while reducing the communication time during model publishing. To this end, this paper introduces a novel approach using knowledge distillation techniques aimed at training a surrogate model to stand in for the original DNN model. To be specific, a knowledge distillation generative adversarial network (KDGAN) model is proposed to train a student model capable of achieving remarkable performance levels while simultaneously safeguarding the copyright integrity of the original large teacher model and improving communication efficiency during model publishing. Herein, comprehensive experiments are conducted to showcase the efficacy of model copyright protection, communication-efficient model publishing, and the superiority of the proposed KDGAN model over other copyright protection mechanisms.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf