Asynchronous Wireless Signal Modulation Recognition Based on In-Phase Quadrature Histogram

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Xu Zhang, Xi Hui, Pengwu Wan, Tengfei Hui, Xiongfei Li
{"title":"Asynchronous Wireless Signal Modulation Recognition Based on In-Phase Quadrature Histogram","authors":"Xu Zhang,&nbsp;Xi Hui,&nbsp;Pengwu Wan,&nbsp;Tengfei Hui,&nbsp;Xiongfei Li","doi":"10.1049/2024/9589239","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Automatic modulation recognition is a key technology in the field of signal processing. Conventional recognition methods suffer from low recognition accuracy at low signal-to-noise ratios (SNR), and when the signal frequency is unstable or there is asynchronous sampling, the performance of conventional recognition methods will deteriorate or even fail. To address these challenges, deep learning-based modulation mode recognition technique is investigated in this paper for low-speed asynchronous sampled signals under channel conditions with varying SNR and delay. Firstly, the low-speed asynchronous sampled signals are modeled, and their in-phase quadrature components are used to generate a two-dimensional asynchronous in-phase quadrature histogram. Then, the feature parameters of this 2D image are extracted by radial basis function neural network (RBFNN) to complete the recognition of the modulation mode of the input signal. Finally, the accuracy of the method for seven modulation methods is verified by extensive simulations. The experimental results show that under the channel model of additive white Gaussian noise (AWGN), when the SNR of the input signal with low-speed asynchronous sampling is 6 dB, more than 95% of the average recognition accuracy can be achieved, and the effectiveness and robustness of the proposed scheme are verified by comparative experiments.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/9589239","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/9589239","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic modulation recognition is a key technology in the field of signal processing. Conventional recognition methods suffer from low recognition accuracy at low signal-to-noise ratios (SNR), and when the signal frequency is unstable or there is asynchronous sampling, the performance of conventional recognition methods will deteriorate or even fail. To address these challenges, deep learning-based modulation mode recognition technique is investigated in this paper for low-speed asynchronous sampled signals under channel conditions with varying SNR and delay. Firstly, the low-speed asynchronous sampled signals are modeled, and their in-phase quadrature components are used to generate a two-dimensional asynchronous in-phase quadrature histogram. Then, the feature parameters of this 2D image are extracted by radial basis function neural network (RBFNN) to complete the recognition of the modulation mode of the input signal. Finally, the accuracy of the method for seven modulation methods is verified by extensive simulations. The experimental results show that under the channel model of additive white Gaussian noise (AWGN), when the SNR of the input signal with low-speed asynchronous sampling is 6 dB, more than 95% of the average recognition accuracy can be achieved, and the effectiveness and robustness of the proposed scheme are verified by comparative experiments.

Abstract Image

基于同相正交直方图的异步无线信号调制识别
自动调制识别是信号处理领域的一项关键技术。传统的识别方法在信噪比(SNR)较低的情况下识别准确率较低,当信号频率不稳定或存在异步采样时,传统识别方法的性能会下降甚至失效。针对这些挑战,本文研究了在信噪比和时延变化的信道条件下,基于深度学习的低速异步采样信号的调制模式识别技术。首先,对低速异步采样信号进行建模,并利用其同相正交分量生成二维异步同相正交直方图。然后,通过径向基函数神经网络(RBFNN)提取该二维图像的特征参数,完成对输入信号调制模式的识别。最后,通过大量仿真验证了该方法对七种调制方式的准确性。实验结果表明,在加性白高斯噪声(AWGN)信道模型下,当低速异步采样的输入信号信噪比为 6 dB 时,平均识别准确率可达 95% 以上,并通过对比实验验证了所提方案的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Signal Processing
IET Signal Processing 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.90%
发文量
83
审稿时长
9.5 months
期刊介绍: IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more. Topics covered by scope include, but are not limited to: advances in single and multi-dimensional filter design and implementation linear and nonlinear, fixed and adaptive digital filters and multirate filter banks statistical signal processing techniques and analysis classical, parametric and higher order spectral analysis signal transformation and compression techniques, including time-frequency analysis system modelling and adaptive identification techniques machine learning based approaches to signal processing Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques theory and application of blind and semi-blind signal separation techniques signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals direction-finding and beamforming techniques for audio and electromagnetic signals analysis techniques for biomedical signals baseband signal processing techniques for transmission and reception of communication signals signal processing techniques for data hiding and audio watermarking sparse signal processing and compressive sensing Special Issue Call for Papers: Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信