{"title":"Quantifying Stability in Inverter-Based Weak Grids in the Presence of Synchronous Condensers","authors":"Sajjad Hadavi;Nabil Mohammed;Ali Mehrizi-Sani;Behrooz Bahrani","doi":"10.1109/OAJPE.2024.3428365","DOIUrl":null,"url":null,"abstract":"The high penetration of renewable energy resources, integrated via power electronic inverters, into weak and low-inertia grids has led to the emergence of new challenges within power systems. The absence of native inertia in inverter-based resources (IBRs), in contrast to fossil-fuel-based generators, can result in sustained oscillations and instability. Synchronous Condensers (SynCons) are being considered as a reborn technology to address the challenges associated with system strengthening and inertia support in IBR-dominant power systems. Despite the well-established nature of SynCons, an additional assessment is necessary to analyze the stability of a weak grid with a high penetration of renewable resources, particularly in the presence of SynCons. This paper proposes a quantitative index for the stability analysis of a system incorporating black-boxed IBRs and SynCons. The proposed index is derived from impedance-based stability analysis. The impact of a SynCon on the proposed stability index is evaluated in a single-machine infinite-bus system, and its accuracy is further verified in an IEEE 39-bus system. Additionally, the findings are corroborated through time-domain simulation tests conducted in PSCAD/EMTDC software.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10598181","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10598181/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The high penetration of renewable energy resources, integrated via power electronic inverters, into weak and low-inertia grids has led to the emergence of new challenges within power systems. The absence of native inertia in inverter-based resources (IBRs), in contrast to fossil-fuel-based generators, can result in sustained oscillations and instability. Synchronous Condensers (SynCons) are being considered as a reborn technology to address the challenges associated with system strengthening and inertia support in IBR-dominant power systems. Despite the well-established nature of SynCons, an additional assessment is necessary to analyze the stability of a weak grid with a high penetration of renewable resources, particularly in the presence of SynCons. This paper proposes a quantitative index for the stability analysis of a system incorporating black-boxed IBRs and SynCons. The proposed index is derived from impedance-based stability analysis. The impact of a SynCon on the proposed stability index is evaluated in a single-machine infinite-bus system, and its accuracy is further verified in an IEEE 39-bus system. Additionally, the findings are corroborated through time-domain simulation tests conducted in PSCAD/EMTDC software.