Transformer and Graph Convolution-Based Unsupervised Detection of Machine Anomalous Sound Under Domain Shifts

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jingke Yan;Yao Cheng;Qin Wang;Lei Liu;Weihua Zhang;Bo Jin
{"title":"Transformer and Graph Convolution-Based Unsupervised Detection of Machine Anomalous Sound Under Domain Shifts","authors":"Jingke Yan;Yao Cheng;Qin Wang;Lei Liu;Weihua Zhang;Bo Jin","doi":"10.1109/TETCI.2024.3377728","DOIUrl":null,"url":null,"abstract":"Thanks to the development of deep learning, machine abnormal sound detection (MASD) based on unsupervised learning has exhibited excellent performance. However, in the task of unsupervised MASD, there are discrepancies between the acoustic characteristics of the test set and the training set under the physical parameter changes (domain shifts) of the same machine's operating conditions. Existing methods not only struggle to stably learn the sound signal features under various domain shifts but also inevitably increase computational overhead. To address these issues, we propose an unsupervised machine abnormal sound detection model based on Transformer and Dynamic Graph Convolution (Unsuper-TDGCN) in this paper. Firstly, we design a network that models time-frequency domain features to capture both global and local spatial and time-frequency interactions, thus improving the model's stability under domain shifts. Then, we introduce a Dynamic Graph Convolutional Network (DyGCN) to model the dependencies between features under domain shifts, enhancing the model's ability to perceive changes in domain features. Finally, a Domain Self-adaptive Network (DSN) is employed to compensate for the performance decline caused by domain shifts, thereby improving the model's adaptive ability for detecting anomalous sounds in MASD tasks under domain shifts. The effectiveness of our proposed model has been validated on multiple datasets.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 4","pages":"2827-2842"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10489914/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Thanks to the development of deep learning, machine abnormal sound detection (MASD) based on unsupervised learning has exhibited excellent performance. However, in the task of unsupervised MASD, there are discrepancies between the acoustic characteristics of the test set and the training set under the physical parameter changes (domain shifts) of the same machine's operating conditions. Existing methods not only struggle to stably learn the sound signal features under various domain shifts but also inevitably increase computational overhead. To address these issues, we propose an unsupervised machine abnormal sound detection model based on Transformer and Dynamic Graph Convolution (Unsuper-TDGCN) in this paper. Firstly, we design a network that models time-frequency domain features to capture both global and local spatial and time-frequency interactions, thus improving the model's stability under domain shifts. Then, we introduce a Dynamic Graph Convolutional Network (DyGCN) to model the dependencies between features under domain shifts, enhancing the model's ability to perceive changes in domain features. Finally, a Domain Self-adaptive Network (DSN) is employed to compensate for the performance decline caused by domain shifts, thereby improving the model's adaptive ability for detecting anomalous sounds in MASD tasks under domain shifts. The effectiveness of our proposed model has been validated on multiple datasets.
基于变换器和图卷积的域偏移下机器异常声音无监督检测
得益于深度学习的发展,基于无监督学习的机器异常声音检测(MASD)表现出了卓越的性能。然而,在无监督 MASD 任务中,测试集和训练集的声学特征在同一机器运行条件下的物理参数变化(域偏移)中存在差异。现有的方法不仅难以在各种域变换下稳定地学习声音信号特征,而且不可避免地增加了计算开销。针对这些问题,我们在本文中提出了一种基于变压器和动态图卷积(Unsuper-TDGCN)的无监督机器异常声音检测模型。首先,我们设计了一种时频域特征建模网络,以捕捉全局和局部空间与时频的相互作用,从而提高模型在域偏移情况下的稳定性。然后,我们引入了动态图卷积网络(DyGCN)来模拟域变化下特征之间的依赖关系,从而提高了模型感知域特征变化的能力。最后,我们采用了领域自适应网络(DSN)来补偿因领域转移而导致的性能下降,从而提高了模型在领域转移情况下检测 MASD 任务中异常声音的自适应能力。我们提出的模型的有效性已在多个数据集上得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信