Towards Energy-Efficient and Thermal-Aware Data Placement for Storage Clusters

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jie Li;Yuhui Deng;Zhifeng Fan;Zijie Zhong;Geyong Min
{"title":"Towards Energy-Efficient and Thermal-Aware Data Placement for Storage Clusters","authors":"Jie Li;Yuhui Deng;Zhifeng Fan;Zijie Zhong;Geyong Min","doi":"10.1109/TSUSC.2024.3351684","DOIUrl":null,"url":null,"abstract":"The explosion of large-scale data has increased the scale and capacity of storage clusters in data centers, leading to huge power consumption issues. Cloud providers can effectively promote the energy efficiency of data centers by employing energy-aware data placement techniques, which primarily encompass storage cluster's power and cooling power. Traditional data placement approaches do not diminish the overall power consumption of the data center due to the heat recirculation effect between storage nodes. To fill this gap, we build an elaborate thermal-aware data center model. Then we propose two energy-efficient thermal-aware data placement strategies, ETDP-I and ETDP-II, to reduce the overall power consumption of the data center. The principle of our proposed algorithm is to utilize a greedy algorithm to calculate the optimal disk sequence at the minimum total power of the data center and then place the data into the optimal disk sequence. We implement these two strategies in a cloud computing simulation platform based on CloudSim. Experimental results unveil that ETDA-I and ETDP-II outperform MinTin-G and MinTout-G in terms of the supplied temperature of CRAC, storage nodes power, cooling cost, and total power consumption of the data center. In particular, ETDP-I and ETDP-II algorithms can save about 9.46\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n-38.93\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n of the overall power consumption compared to MinTout-G and MinTin-G algorithms.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 4","pages":"631-647"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10384827/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The explosion of large-scale data has increased the scale and capacity of storage clusters in data centers, leading to huge power consumption issues. Cloud providers can effectively promote the energy efficiency of data centers by employing energy-aware data placement techniques, which primarily encompass storage cluster's power and cooling power. Traditional data placement approaches do not diminish the overall power consumption of the data center due to the heat recirculation effect between storage nodes. To fill this gap, we build an elaborate thermal-aware data center model. Then we propose two energy-efficient thermal-aware data placement strategies, ETDP-I and ETDP-II, to reduce the overall power consumption of the data center. The principle of our proposed algorithm is to utilize a greedy algorithm to calculate the optimal disk sequence at the minimum total power of the data center and then place the data into the optimal disk sequence. We implement these two strategies in a cloud computing simulation platform based on CloudSim. Experimental results unveil that ETDA-I and ETDP-II outperform MinTin-G and MinTout-G in terms of the supplied temperature of CRAC, storage nodes power, cooling cost, and total power consumption of the data center. In particular, ETDP-I and ETDP-II algorithms can save about 9.46 $\%$ -38.93 $\%$ of the overall power consumption compared to MinTout-G and MinTin-G algorithms.
为存储集群实现高能效和热感知数据布局
大规模数据的爆炸式增长扩大了数据中心存储集群的规模和容量,导致巨大的功耗问题。云提供商可以通过采用能效感知的数据放置技术有效提高数据中心的能效,这些技术主要包括存储集群的功率和冷却功率。由于存储节点之间的热再循环效应,传统的数据放置方法无法降低数据中心的整体能耗。为了填补这一空白,我们建立了一个精心设计的热感知数据中心模型。然后,我们提出了两种高效节能的热感知数据放置策略--ETDP-I 和 ETDP-II,以降低数据中心的总体功耗。我们提出的算法的原理是利用贪婪算法计算出数据中心总功耗最小的最优磁盘序列,然后将数据放置到最优磁盘序列中。我们在基于 CloudSim 的云计算仿真平台上实现了这两种策略。实验结果表明,ETDA-I 和 ETDP-II 在 CRAC 供电温度、存储节点功率、冷却成本和数据中心总功耗方面均优于 MinTin-G 和 MinTout-G。特别是,与 MinTout-G 和 MinTin-G 算法相比,ETDP-I 和 ETDP-II 算法可以节省约 9.46$\%$-38.93$/%$ 的总功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信