CloudProphet: A Machine Learning-Based Performance Prediction for Public Clouds

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Darong Huang;Luis Costero;Ali Pahlevan;Marina Zapater;David Atienza
{"title":"CloudProphet: A Machine Learning-Based Performance Prediction for Public Clouds","authors":"Darong Huang;Luis Costero;Ali Pahlevan;Marina Zapater;David Atienza","doi":"10.1109/TSUSC.2024.3359325","DOIUrl":null,"url":null,"abstract":"Computing servers have played a key role in developing and processing emerging compute-intensive applications in recent years. Consolidating multiple virtual machines (VMs) inside one server to run various applications introduces severe competence for limited resources among VMs. Many techniques such as VM scheduling and resource provisioning are proposed to maximize the cost-efficiency of the computing servers while alleviating the performance inference between VMs. However, these management techniques require accurate performance prediction of the application running inside the VM, which is challenging to get in the public cloud due to the black-box nature of the VMs. From this perspective, this paper proposes a novel machine learning-based performance prediction approach for applications running in the cloud. To achieve high-accuracy predictions for black-box VMs, the proposed method first identifies the running application inside the virtual machine. It then selects highly correlated runtime metrics as the input of the machine learning approach to accurately predict the performance level of the cloud application. Experimental results with state-of-the-art cloud benchmarks demonstrate that our proposed method outperforms existing prediction methods by more than 2× in terms of the worst prediction error. In addition, we successfully tackle the challenge of performance prediction for applications with variable workloads by introducing the performance degradation index, which other comparison methods fail to consider. The workflow versatility of the proposed approach has been verified with different modern servers and VM configurations.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 4","pages":"661-676"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10415550/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Computing servers have played a key role in developing and processing emerging compute-intensive applications in recent years. Consolidating multiple virtual machines (VMs) inside one server to run various applications introduces severe competence for limited resources among VMs. Many techniques such as VM scheduling and resource provisioning are proposed to maximize the cost-efficiency of the computing servers while alleviating the performance inference between VMs. However, these management techniques require accurate performance prediction of the application running inside the VM, which is challenging to get in the public cloud due to the black-box nature of the VMs. From this perspective, this paper proposes a novel machine learning-based performance prediction approach for applications running in the cloud. To achieve high-accuracy predictions for black-box VMs, the proposed method first identifies the running application inside the virtual machine. It then selects highly correlated runtime metrics as the input of the machine learning approach to accurately predict the performance level of the cloud application. Experimental results with state-of-the-art cloud benchmarks demonstrate that our proposed method outperforms existing prediction methods by more than 2× in terms of the worst prediction error. In addition, we successfully tackle the challenge of performance prediction for applications with variable workloads by introducing the performance degradation index, which other comparison methods fail to consider. The workflow versatility of the proposed approach has been verified with different modern servers and VM configurations.
云预言家(CloudProphet):基于机器学习的公有云性能预测
近年来,计算服务器在开发和处理新兴计算密集型应用方面发挥了关键作用。在一台服务器中整合多个虚拟机(VM)以运行各种应用,会导致虚拟机之间对有限资源的严重争夺。人们提出了许多技术,如虚拟机调度和资源调配,以最大限度地提高计算服务器的成本效益,同时减轻虚拟机之间的性能差异。然而,这些管理技术需要对虚拟机内部运行的应用程序进行准确的性能预测,而由于虚拟机的黑盒性质,要在公共云中实现这一点具有挑战性。从这个角度出发,本文针对云中运行的应用程序提出了一种基于机器学习的新型性能预测方法。为实现对黑盒虚拟机的高精度预测,本文提出的方法首先要识别虚拟机内运行的应用程序。然后,它选择高度相关的运行时指标作为机器学习方法的输入,以准确预测云应用程序的性能水平。使用最先进的云基准进行的实验结果表明,我们提出的方法在最差预测误差方面比现有预测方法高出 2 倍以上。此外,我们还引入了性能退化指数,成功地解决了工作负载可变的应用程序性能预测难题,而其他比较方法却没有考虑到这一点。建议方法的工作流通用性已在不同的现代服务器和虚拟机配置中得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信