Battery-Aware Workflow Scheduling for Portable Heterogeneous Computing

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Fu Jiang;Yaoxin Xia;Lisen Yan;Weirong Liu;Xiaoyong Zhang;Heng Li;Jun Peng
{"title":"Battery-Aware Workflow Scheduling for Portable Heterogeneous Computing","authors":"Fu Jiang;Yaoxin Xia;Lisen Yan;Weirong Liu;Xiaoyong Zhang;Heng Li;Jun Peng","doi":"10.1109/TSUSC.2024.3360975","DOIUrl":null,"url":null,"abstract":"Battery degradation is a main hinder to extend the persistent lifespan of the portable heterogeneous computing device. Excessive energy consumption and prominent current fluctuations can lead to a sharp decline of battery endurance. To address this issue, a battery-aware workflow scheduling algorithm is proposed to maximize the battery lifetime and release the computing potential of the device fully. First, a dynamic optimal budget strategy is developed to select the highest cost-effectiveness processors to meet the deadline of each task, accelerating the budget optimization by incorporating deep neural network. Second, an integer-programming greedy strategy is utilized to determine the start time of each task, minimizing the fluctuation of the battery supply current to mitigate the battery degradation. Finally, a long-term operation experiment and Monte Carlo experiments are performed on the battery simulator, SLIDE. The experimental results under real operating conditions for more than 1800 hours validate that the proposed scheduling algorithm can effectively extend the battery life by 7.31%-8.23%. The results on various parallel workflows illustrate that the proposed algorithm has comparable performance with speed improvement over the integer programming method.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 4","pages":"677-694"},"PeriodicalIF":3.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10418576/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Battery degradation is a main hinder to extend the persistent lifespan of the portable heterogeneous computing device. Excessive energy consumption and prominent current fluctuations can lead to a sharp decline of battery endurance. To address this issue, a battery-aware workflow scheduling algorithm is proposed to maximize the battery lifetime and release the computing potential of the device fully. First, a dynamic optimal budget strategy is developed to select the highest cost-effectiveness processors to meet the deadline of each task, accelerating the budget optimization by incorporating deep neural network. Second, an integer-programming greedy strategy is utilized to determine the start time of each task, minimizing the fluctuation of the battery supply current to mitigate the battery degradation. Finally, a long-term operation experiment and Monte Carlo experiments are performed on the battery simulator, SLIDE. The experimental results under real operating conditions for more than 1800 hours validate that the proposed scheduling algorithm can effectively extend the battery life by 7.31%-8.23%. The results on various parallel workflows illustrate that the proposed algorithm has comparable performance with speed improvement over the integer programming method.
便携式异构计算的电池感知工作流调度
电池衰减是延长便携式异构计算设备持久寿命的主要障碍。过多的能耗和突出的电流波动会导致电池续航能力急剧下降。为解决这一问题,我们提出了一种电池感知工作流调度算法,以最大限度地延长电池寿命,充分释放设备的计算潜能。首先,开发了一种动态优化预算策略,以选择性价比最高的处理器来满足每个任务的截止日期要求,并通过深度神经网络加速预算优化。其次,利用整数编程贪婪策略确定每项任务的启动时间,最大限度地减少电池供电电流的波动,以缓解电池衰减。最后,在电池模拟器 SLIDE 上进行了长期运行实验和蒙特卡罗实验。在实际运行条件下超过 1800 小时的实验结果验证了所提出的调度算法能有效延长电池寿命 7.31%-8.23% 。各种并行工作流的结果表明,与整数编程方法相比,所提出的算法性能相当,速度也有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信