IDM-Follower: A Model-Informed Deep Learning Method for Car-Following Trajectory Prediction

IF 14 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yilin Wang;Yiheng Feng
{"title":"IDM-Follower: A Model-Informed Deep Learning Method for Car-Following Trajectory Prediction","authors":"Yilin Wang;Yiheng Feng","doi":"10.1109/TIV.2024.3367654","DOIUrl":null,"url":null,"abstract":"Model-based and learning-based methods are two main approaches modeling car-following behaviors. To combine advantages from both types of models, this study introduces a novel approach, IDM-Follower, which generates a sequence of the following vehicle's trajectory using a recurrent autoencoder informed by a physical car-following model, the Intelligent Driving Model (IDM). We design an innovative neural network (NN) structure with two independent encoders and an attention-based decoder to predict the trajectory sequence. The loss function accounts for discrepancies from both the physical car-following model and the NN predictions. Numerical experiments are conducted using simulated and real world (i.e., NGSIM) datasets under different data noise levels with varying weights between the learning loss and the model loss. Testing results show the proposed approach outperforms both model-based and learning-based baselines under real and high noise levels. The optimal integrating weight between the model and learning component is significantly influenced by data quality, which affects both prediction accuracy and safety metrics.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"9 6","pages":"5014-5020"},"PeriodicalIF":14.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Vehicles","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10440530/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Model-based and learning-based methods are two main approaches modeling car-following behaviors. To combine advantages from both types of models, this study introduces a novel approach, IDM-Follower, which generates a sequence of the following vehicle's trajectory using a recurrent autoencoder informed by a physical car-following model, the Intelligent Driving Model (IDM). We design an innovative neural network (NN) structure with two independent encoders and an attention-based decoder to predict the trajectory sequence. The loss function accounts for discrepancies from both the physical car-following model and the NN predictions. Numerical experiments are conducted using simulated and real world (i.e., NGSIM) datasets under different data noise levels with varying weights between the learning loss and the model loss. Testing results show the proposed approach outperforms both model-based and learning-based baselines under real and high noise levels. The optimal integrating weight between the model and learning component is significantly influenced by data quality, which affects both prediction accuracy and safety metrics.
IDM-Follower:用于汽车跟随轨迹预测的模型启发式深度学习方法
基于模型的方法和基于学习的方法是模拟汽车跟随行为的两种主要方法。为了结合这两种模型的优势,本研究引入了一种新方法 IDM-Follower,该方法利用基于物理汽车跟随模型(智能驾驶模型,IDM)的递归自动编码器生成跟随车辆的轨迹序列。我们设计了一种创新的神经网络(NN)结构,其中包含两个独立的编码器和一个基于注意力的解码器,用于预测轨迹序列。损失函数考虑了物理汽车跟随模型和神经网络预测的差异。在不同的数据噪声水平下,使用模拟和真实世界(即 NGSIM)数据集进行了数值实验,学习损失和模型损失之间的权重各不相同。测试结果表明,在真实和高噪声水平下,所提出的方法优于基于模型和基于学习的基线方法。模型和学习部分之间的最佳整合权重受到数据质量的显著影响,而数据质量又会影响预测准确性和安全性指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Intelligent Vehicles
IEEE Transactions on Intelligent Vehicles Mathematics-Control and Optimization
CiteScore
12.10
自引率
13.40%
发文量
177
期刊介绍: The IEEE Transactions on Intelligent Vehicles (T-IV) is a premier platform for publishing peer-reviewed articles that present innovative research concepts, application results, significant theoretical findings, and application case studies in the field of intelligent vehicles. With a particular emphasis on automated vehicles within roadway environments, T-IV aims to raise awareness of pressing research and application challenges. Our focus is on providing critical information to the intelligent vehicle community, serving as a dissemination vehicle for IEEE ITS Society members and others interested in learning about the state-of-the-art developments and progress in research and applications related to intelligent vehicles. Join us in advancing knowledge and innovation in this dynamic field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信