{"title":"Structure-based approaches in synthetic lethality strategies","authors":"Francesco Rinaldi , Stefania Girotto","doi":"10.1016/j.sbi.2024.102895","DOIUrl":null,"url":null,"abstract":"<div><p>Evolution has fostered robust DNA damage response (DDR) mechanisms to combat DNA lesions. However, disruptions in this intricate machinery can render cells overly reliant on the remaining functional but often less accurate DNA repair pathways. This increased dependence on error-prone pathways may result in improper repair and the accumulation of mutations, fostering genomic instability and facilitating the uncontrolled cell proliferation characteristic of cancer initiation and progression. Strategies based on the concept of synthetic lethality (SL) leverage the inherent genomic instability of cancer cells by targeting alternative pathways, thereby inducing selective death of cancer cells. This review emphasizes recent advancements in structural investigations of pivotal SL targets. The significant contribution of structure-based methodologies to SL research underscores their potential impact in characterizing the growing number of SL targets, largely due to advances in next-generation sequencing. Harnessing these approaches is essential for advancing the development of precise and personalized SL therapeutic strategies.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"88 ","pages":"Article 102895"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24001222/pdfft?md5=c8115c810565f45aed7da20325db8917&pid=1-s2.0-S0959440X24001222-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24001222","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Evolution has fostered robust DNA damage response (DDR) mechanisms to combat DNA lesions. However, disruptions in this intricate machinery can render cells overly reliant on the remaining functional but often less accurate DNA repair pathways. This increased dependence on error-prone pathways may result in improper repair and the accumulation of mutations, fostering genomic instability and facilitating the uncontrolled cell proliferation characteristic of cancer initiation and progression. Strategies based on the concept of synthetic lethality (SL) leverage the inherent genomic instability of cancer cells by targeting alternative pathways, thereby inducing selective death of cancer cells. This review emphasizes recent advancements in structural investigations of pivotal SL targets. The significant contribution of structure-based methodologies to SL research underscores their potential impact in characterizing the growing number of SL targets, largely due to advances in next-generation sequencing. Harnessing these approaches is essential for advancing the development of precise and personalized SL therapeutic strategies.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation