A practical applications guide to machine learning regression models in psychology with Python

Q2 Psychology
Nataša Kovač , Kruna Ratković , Hojjatollah Farahani , Peter Watson
{"title":"A practical applications guide to machine learning regression models in psychology with Python","authors":"Nataša Kovač ,&nbsp;Kruna Ratković ,&nbsp;Hojjatollah Farahani ,&nbsp;Peter Watson","doi":"10.1016/j.metip.2024.100156","DOIUrl":null,"url":null,"abstract":"<div><p>This guide presents a detailed overview of the most used machine learning (ML) techniques for psychologists who may not be familiar with advanced statistical methods, algorithms, or programming. Recognizing the growing interest in using data-driven approaches within psychological research, this guide describes applying ML techniques to investigate complex psychological phenomena. The paper covers the spectrum of algorithms, including decision trees, random forests, gradient boosting, stochastic gradient boosting, and XGBoost, highlighting their concepts and practical applications in psychology. Aiming to bridge the gap between theoretical understanding and practical performance, this paper offers step-by-step instructions on data preprocessing, correlation exploration, feature selection, and model evaluation within the Python programming environment. Readers are offered the necessary tools to apply ML in their research through explanations, examples, and visualization.</p></div>","PeriodicalId":93338,"journal":{"name":"Methods in Psychology (Online)","volume":"11 ","pages":"Article 100156"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590260124000225/pdfft?md5=b9abb3999ed9add2567c56203a7e7790&pid=1-s2.0-S2590260124000225-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Psychology (Online)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590260124000225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 0

Abstract

This guide presents a detailed overview of the most used machine learning (ML) techniques for psychologists who may not be familiar with advanced statistical methods, algorithms, or programming. Recognizing the growing interest in using data-driven approaches within psychological research, this guide describes applying ML techniques to investigate complex psychological phenomena. The paper covers the spectrum of algorithms, including decision trees, random forests, gradient boosting, stochastic gradient boosting, and XGBoost, highlighting their concepts and practical applications in psychology. Aiming to bridge the gap between theoretical understanding and practical performance, this paper offers step-by-step instructions on data preprocessing, correlation exploration, feature selection, and model evaluation within the Python programming environment. Readers are offered the necessary tools to apply ML in their research through explanations, examples, and visualization.

使用 Python 的心理学机器学习回归模型实用应用指南
本指南为不熟悉高级统计方法、算法或编程的心理学家详细介绍了最常用的机器学习(ML)技术。认识到在心理学研究中使用数据驱动方法的兴趣与日俱增,本指南介绍了如何应用机器学习技术来研究复杂的心理现象。本文涵盖了各种算法,包括决策树、随机森林、梯度提升、随机梯度提升和 XGBoost,重点介绍了它们在心理学中的概念和实际应用。为了缩小理论理解与实际应用之间的差距,本文在 Python 编程环境中提供了有关数据预处理、相关性探索、特征选择和模型评估的逐步指导。通过解释、示例和可视化,为读者提供了在研究中应用 ML 的必要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in Psychology (Online)
Methods in Psychology (Online) Experimental and Cognitive Psychology, Clinical Psychology, Developmental and Educational Psychology
CiteScore
5.50
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信