Convergence analysis of a simplified scheme for stochastic Burgers’ equation with additive noise

IF 1.4 Q2 MATHEMATICS, APPLIED
Feroz Khan , Suliman Khan , Muhammad Zahid Mughal , Feredj Ommar
{"title":"Convergence analysis of a simplified scheme for stochastic Burgers’ equation with additive noise","authors":"Feroz Khan ,&nbsp;Suliman Khan ,&nbsp;Muhammad Zahid Mughal ,&nbsp;Feredj Ommar","doi":"10.1016/j.rinam.2024.100482","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this article is to probe the convergence analysis of an efficient scheme, developed by Jentzen et al. (2011), for the stochastic Burgers’ equation (SBE) with term of additive noise. Although, the same scheme was used by Blomker et al. (2013) to carry out the full discretization of the SBE. But therein, Taylor series was not applied. In this work, Taylor series in integral form with remainder after one term is applied. As a consequence, minimum convergence order in time is updated to <span><math><mrow><mn>3</mn><mi>θ</mi></mrow></math></span> from <span><math><mi>θ</mi></math></span>, where <span><math><mrow><mi>θ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>. Although, minimum temporal convergence order is proved to be as <span><math><mrow><mn>2</mn><mi>θ</mi></mrow></math></span> by Khan (2021) using the higher order scheme. But the proposed scheme is simple in a manner that former uses two linear functionals of noise, whereas later employs single linear functional of noise. Finally, run time of the existing and the proposed scheme are compared to justify the analytical outcomes.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100482"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000529/pdfft?md5=f76765fadcd73a8370434868b3fcf644&pid=1-s2.0-S2590037424000529-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this article is to probe the convergence analysis of an efficient scheme, developed by Jentzen et al. (2011), for the stochastic Burgers’ equation (SBE) with term of additive noise. Although, the same scheme was used by Blomker et al. (2013) to carry out the full discretization of the SBE. But therein, Taylor series was not applied. In this work, Taylor series in integral form with remainder after one term is applied. As a consequence, minimum convergence order in time is updated to 3θ from θ, where θ(0,12). Although, minimum temporal convergence order is proved to be as 2θ by Khan (2021) using the higher order scheme. But the proposed scheme is simple in a manner that former uses two linear functionals of noise, whereas later employs single linear functional of noise. Finally, run time of the existing and the proposed scheme are compared to justify the analytical outcomes.

具有加性噪声的随机布尔格斯方程简化方案的收敛性分析
本文的目的是探究 Jentzen 等人(2011 年)针对带有加性噪声项的随机布尔格斯方程(SBE)所开发的高效方案的收敛性分析。尽管 Blomker 等人(2013 年)使用了相同的方案对 SBE 进行了完全离散化。但其中并未应用泰勒级数。在本研究中,采用了带余项的积分形式泰勒级数。因此,最小时间收敛阶数从θ更新为 3θ,其中θ∈(0,12)。尽管 Khan(2021 年)使用高阶方案证明最小时间收敛阶数为 2θ。但拟议方案的简单之处在于,前者使用两个线性噪声函数,而后者使用单个线性噪声函数。最后,比较了现有方案和建议方案的运行时间,以证明分析结果的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信