{"title":"Tissue-specific knockdown of OMM protein via GFP nanobody-mediated degradation","authors":"Xiaojie Wang , Qiyue Zhang , Suhong Xu","doi":"10.1016/j.mitoco.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>Mitochondria, with their diverse morphologies across tissues, hint at a unique function based on location. For instance, outer mitochondrial membrane (OMM) proteins are critical for various mitochondrial activities, including regulating mitochondrial dynamics, ion homeostasis, and protein translocation. This study introduces a green fluorescent protein (GFP) nanobody-mediated protein degradation (G-DEG) system to investigate tissue-specific mitochondrial functions in <em>Caenorhabditis elegans</em> and potential other model systems. G-DEG combines CRISPR-Cas9 GFP knock-in with ZIF-1-mediated protein degradation, leveraging the high specificity of antigen–antibody recognition for precise manipulation across species. We demonstrate the G-DEG system by targeting FZO-1, a mammalian homolog of MAN1/2, which is essential for mitochondrial fusion. Our protocol includes CRISPR-Cas9-mediated <em>fzo-1</em>:GFP knock-in and the construction of tissue-specific GFP nanobody degradation plasmids for the epidermis, muscle, and neurons. Injection of these plasmids into wild-type <em>C. elegans</em> and subsequent crossbreeding with the <em>fzo-1</em>:GFP knock-in strain allows for effective FZO-1 targeting, providing tissue-specific insights into mitochondrial protein function. Overall, G-DEG emerges as a powerful and versatile tool for tissue-specific knockdown of OMM proteins, paving the way for advanced studies on their diverse biological functions.</p></div>","PeriodicalId":100931,"journal":{"name":"Mitochondrial Communications","volume":"2 ","pages":"Pages 85-89"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590279224000087/pdfft?md5=f5d2d52b3e5d9bb6460686031c07f0e6&pid=1-s2.0-S2590279224000087-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590279224000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria, with their diverse morphologies across tissues, hint at a unique function based on location. For instance, outer mitochondrial membrane (OMM) proteins are critical for various mitochondrial activities, including regulating mitochondrial dynamics, ion homeostasis, and protein translocation. This study introduces a green fluorescent protein (GFP) nanobody-mediated protein degradation (G-DEG) system to investigate tissue-specific mitochondrial functions in Caenorhabditis elegans and potential other model systems. G-DEG combines CRISPR-Cas9 GFP knock-in with ZIF-1-mediated protein degradation, leveraging the high specificity of antigen–antibody recognition for precise manipulation across species. We demonstrate the G-DEG system by targeting FZO-1, a mammalian homolog of MAN1/2, which is essential for mitochondrial fusion. Our protocol includes CRISPR-Cas9-mediated fzo-1:GFP knock-in and the construction of tissue-specific GFP nanobody degradation plasmids for the epidermis, muscle, and neurons. Injection of these plasmids into wild-type C. elegans and subsequent crossbreeding with the fzo-1:GFP knock-in strain allows for effective FZO-1 targeting, providing tissue-specific insights into mitochondrial protein function. Overall, G-DEG emerges as a powerful and versatile tool for tissue-specific knockdown of OMM proteins, paving the way for advanced studies on their diverse biological functions.