Nico Bückreiß, Marie Schulz-Fincke, Philipp König, Marco Maccarana, Toin H. van Kuppevelt, Jin-ping Li, Martin Götte and Gerd Bendas*,
{"title":"Epigenetic Targeting of Heparan Sulfate 3-O- and 6-O-Sulfation in Breast Cancer Cells: Prospects for Attenuating Prothrombotic Tumor Cell Activities","authors":"Nico Bückreiß, Marie Schulz-Fincke, Philipp König, Marco Maccarana, Toin H. van Kuppevelt, Jin-ping Li, Martin Götte and Gerd Bendas*, ","doi":"10.1021/acsptsci.4c0029510.1021/acsptsci.4c00295","DOIUrl":null,"url":null,"abstract":"<p >The deregulation of cell surface heparan sulfate proteoglycans (HSPGs) is a main issue of cancer cells for increasing their malignancy. In these terms, the sulfation pattern of HS, created by an orchestrated activity of enzymes balancing a site-specific sulfation, is of key importance. These enzymes are often deregulated by epigenetic processes in cancer, e.g., being silenced by DNA hypermethylation. Here, we address this issue in human breast cancer cell lines aiming to target epigenetic processes to reactivate HS sulfation, shifting HS into an antithrombotic phenotype for which 3-<i>O</i>-sulfation is particularly important. Treatment of MCF-7 and MDA-MB-231 cells with nontoxic concentrations of 5-azacytidine (azacytidine) and 5-fluoro-2′-deoxycytidine (FdCyd) as DNMT inhibitors or vorinostat for targeting HDAC increased HS3-<i>O</i>-sulfation remarkably, as confirmed by fluorescence microscopy, by upregulating HS3-<i>O</i>-sulfotransferases, detected by quantitative real-time polymerase chain reaction and Western blot. Flow cytometry and microscopic approaches confirm that upon inhibitor treatment, increased HS3-<i>O</i>-sulfation improves cell binding to antithrombin, leading to an antithrombotic activity. Nevertheless, only azacytidine- and vorinostat-treated cells display anticoagulative properties, represented by attenuated thrombin formation, a lower activation of human platelet aggregation, or ATP release. In contrast, FdCyd additionally upregulated tissue factor expression in both cell lines, overshadowing the anticoagulant effects of HS, leading to an overall prothrombotic phenotype. Our data provide evidence for the first time that targeting epigenetic processes in HS sulfation is a valuable means to foster anticoagulative cell properties for decreasing malignancy and metastatic potency. These data warrant further investigations to fine-tune epigenetic targeting and to search for potential biomarkers attributed to these activities.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 8","pages":"2484–2495 2484–2495"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The deregulation of cell surface heparan sulfate proteoglycans (HSPGs) is a main issue of cancer cells for increasing their malignancy. In these terms, the sulfation pattern of HS, created by an orchestrated activity of enzymes balancing a site-specific sulfation, is of key importance. These enzymes are often deregulated by epigenetic processes in cancer, e.g., being silenced by DNA hypermethylation. Here, we address this issue in human breast cancer cell lines aiming to target epigenetic processes to reactivate HS sulfation, shifting HS into an antithrombotic phenotype for which 3-O-sulfation is particularly important. Treatment of MCF-7 and MDA-MB-231 cells with nontoxic concentrations of 5-azacytidine (azacytidine) and 5-fluoro-2′-deoxycytidine (FdCyd) as DNMT inhibitors or vorinostat for targeting HDAC increased HS3-O-sulfation remarkably, as confirmed by fluorescence microscopy, by upregulating HS3-O-sulfotransferases, detected by quantitative real-time polymerase chain reaction and Western blot. Flow cytometry and microscopic approaches confirm that upon inhibitor treatment, increased HS3-O-sulfation improves cell binding to antithrombin, leading to an antithrombotic activity. Nevertheless, only azacytidine- and vorinostat-treated cells display anticoagulative properties, represented by attenuated thrombin formation, a lower activation of human platelet aggregation, or ATP release. In contrast, FdCyd additionally upregulated tissue factor expression in both cell lines, overshadowing the anticoagulant effects of HS, leading to an overall prothrombotic phenotype. Our data provide evidence for the first time that targeting epigenetic processes in HS sulfation is a valuable means to foster anticoagulative cell properties for decreasing malignancy and metastatic potency. These data warrant further investigations to fine-tune epigenetic targeting and to search for potential biomarkers attributed to these activities.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.