Predictive modelling of mineral prospectivity using satellite remote sensing and machine learning algorithms

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
Muhammad Ahsan Mahboob , Turgay Celik , Bekir Genc
{"title":"Predictive modelling of mineral prospectivity using satellite remote sensing and machine learning algorithms","authors":"Muhammad Ahsan Mahboob ,&nbsp;Turgay Celik ,&nbsp;Bekir Genc","doi":"10.1016/j.rsase.2024.101316","DOIUrl":null,"url":null,"abstract":"<div><p>In today's world of falling returns on fixed exploration budgets, complex targets, and ever-increasing volumes of multi-parameter datasets, the effective management and integration of existing data are essential to any mineral exploration operation. Machine learning (ML) algorithms like Convolutional Neural Networks (CNN), Random Forest (RF), and Support Vector Machine (SVM) are powerful data-driven methods that are not implemented very often with remote sensing-derived hydrothermal alternation information and limited field datasets for mapping mineral prospectivity. The application of machine learning algorithms with satellite remote sensing data and limited field data, they have not been compared and evaluated together thoroughly in this field. A data science approach was applied to create nine predictor maps, incorporating limited field data and satellite remote sensing information. A confusion matrix, statistical measures, and a Receiver Operating Characteristic (ROC) curve were used to evaluate the prediction models efficacy on both the training and test datasets. The results suggested that the RF model exhibited the highest predictive accuracy, consistency and interpretability among the three ML models evaluated in this study. RF model also achieved the highest predictive efficiency in capturing known copper (Cu) deposits within a small prospective area. In comparison to the SVM and CNN models, the RF model outperformed them in terms of predictive accuracy and interpretability. These results imply that the RF model is the most suitable for Cu potential mapping in the Pakistan's North Waziristan region. Consequently, all the models including the RF model were used to generate a prospectivity map, which contained low to very-high potential zones, to support further exploration in the region. The newly discovered deposit inside the predicted prospective areas demonstrates the robustness and efficacy of the prospectivity modelling approach as proposed in this research for generating exploration targets.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101316"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352938524001800/pdfft?md5=0d80c11e8d639fef33b2ad612b779085&pid=1-s2.0-S2352938524001800-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524001800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In today's world of falling returns on fixed exploration budgets, complex targets, and ever-increasing volumes of multi-parameter datasets, the effective management and integration of existing data are essential to any mineral exploration operation. Machine learning (ML) algorithms like Convolutional Neural Networks (CNN), Random Forest (RF), and Support Vector Machine (SVM) are powerful data-driven methods that are not implemented very often with remote sensing-derived hydrothermal alternation information and limited field datasets for mapping mineral prospectivity. The application of machine learning algorithms with satellite remote sensing data and limited field data, they have not been compared and evaluated together thoroughly in this field. A data science approach was applied to create nine predictor maps, incorporating limited field data and satellite remote sensing information. A confusion matrix, statistical measures, and a Receiver Operating Characteristic (ROC) curve were used to evaluate the prediction models efficacy on both the training and test datasets. The results suggested that the RF model exhibited the highest predictive accuracy, consistency and interpretability among the three ML models evaluated in this study. RF model also achieved the highest predictive efficiency in capturing known copper (Cu) deposits within a small prospective area. In comparison to the SVM and CNN models, the RF model outperformed them in terms of predictive accuracy and interpretability. These results imply that the RF model is the most suitable for Cu potential mapping in the Pakistan's North Waziristan region. Consequently, all the models including the RF model were used to generate a prospectivity map, which contained low to very-high potential zones, to support further exploration in the region. The newly discovered deposit inside the predicted prospective areas demonstrates the robustness and efficacy of the prospectivity modelling approach as proposed in this research for generating exploration targets.

利用卫星遥感和机器学习算法建立矿产远景预测模型
当今世界,固定勘探预算的回报率不断下降,目标复杂,多参数数据集不断增加,有效管理和整合现有数据对任何矿产勘探作业都至关重要。卷积神经网络(CNN)、随机森林(RF)和支持向量机(SVM)等机器学习(ML)算法是强大的数据驱动方法,但这些方法并不经常用于遥感衍生的热液交替信息和有限的野外数据集,以绘制矿产远景图。将机器学习算法应用于卫星遥感数据和有限的野外数据,在这一领域还没有对它们进行过全面的比较和评估。我们采用数据科学方法,结合有限的实地数据和卫星遥感信息,绘制了九张预测图。使用混淆矩阵、统计量和接收者工作特征曲线(ROC)来评估预测模型在训练和测试数据集上的功效。结果表明,在本研究评估的三个 ML 模型中,射频模型的预测准确性、一致性和可解释性最高。射频模型在捕捉小远景区域内的已知铜(Cu)矿床方面也实现了最高的预测效率。与 SVM 和 CNN 模型相比,RF 模型在预测准确性和可解释性方面均优于它们。这些结果表明,射频模型最适合用于巴基斯坦北瓦济里斯坦地区的铜矿潜力绘图。因此,包括射频模型在内的所有模型都被用来绘制远景图,其中包含从低到极高的潜力区,以支持该地区的进一步勘探。在预测的远景区域内新发现的矿床证明了本研究提出的远景建模方法在生成勘探目标方面的稳健性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信