{"title":"Optimized PI-PDF active structural acoustic control of smart FG GPL-reinforced closed-cell metallic foam sandwich plate","authors":"Zhao Guo","doi":"10.1016/j.jfluidstructs.2024.104168","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates Active Structural Acoustic Control (ASAC) applied to sandwich plates featuring Functionally Grade (FG) porous Graphene-Platelet-Reinforced Piezoelectric (GPLRP) materials. These plates incorporate a core layer with internal pores and GPLs dispersed in a metal matrix, along with piezoelectric sensors and actuators. Using a spatial state-space formulation based on linear 3D piezoelasticity theory, a semi-analytical solution is derived for the vibroacoustic response of these sandwich plates. The mechanical properties of the porous core are modeled using a closed-cell metal foam. The effects of various parameters, including porosity distributions, porosity coefficient, weight fractions of nanofiller, and geometric parameters on the radiation efficiency and radiated sound power have been investigated. Then, the validation of the proposed model is examined by comparing the natural frequencies calculated in the present study to those from the literature. This comparison allows us to assess the accuracy and reliability of our model against established findings. Radiated sound power reduction from mechanically excited structures is achieved by employing a dual-stage Proportional Integral–Proportional Derivative with Filter (PI-PDF) controller, optimized using Grey Wolf Optimization (GWO). Finally, several numerical simulations are conducted to validate the effectiveness and accuracy of the proposed active control strategy.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624001038","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates Active Structural Acoustic Control (ASAC) applied to sandwich plates featuring Functionally Grade (FG) porous Graphene-Platelet-Reinforced Piezoelectric (GPLRP) materials. These plates incorporate a core layer with internal pores and GPLs dispersed in a metal matrix, along with piezoelectric sensors and actuators. Using a spatial state-space formulation based on linear 3D piezoelasticity theory, a semi-analytical solution is derived for the vibroacoustic response of these sandwich plates. The mechanical properties of the porous core are modeled using a closed-cell metal foam. The effects of various parameters, including porosity distributions, porosity coefficient, weight fractions of nanofiller, and geometric parameters on the radiation efficiency and radiated sound power have been investigated. Then, the validation of the proposed model is examined by comparing the natural frequencies calculated in the present study to those from the literature. This comparison allows us to assess the accuracy and reliability of our model against established findings. Radiated sound power reduction from mechanically excited structures is achieved by employing a dual-stage Proportional Integral–Proportional Derivative with Filter (PI-PDF) controller, optimized using Grey Wolf Optimization (GWO). Finally, several numerical simulations are conducted to validate the effectiveness and accuracy of the proposed active control strategy.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.