Regular and exploratory resource extraction models considering sustainability

IF 1.4 Q2 MATHEMATICS, APPLIED
Hidekazu Yoshioka
{"title":"Regular and exploratory resource extraction models considering sustainability","authors":"Hidekazu Yoshioka","doi":"10.1016/j.rinam.2024.100484","DOIUrl":null,"url":null,"abstract":"<div><p>We formulate an optimal control problem of resource extraction, where a decision maker with sustainability concern dynamically controls the extraction rate. We assume harvesting to increase profit and incur a risk of resource depletion and aim to resolve sustainability concerns. The optimality equation of the control problem is the Hamilton–Jacobi–Bellman (HJB) equation with an unbounded Hamiltonian. A regularization technique to bound the Hamiltonian is proposed to prove the existence of a unique viscosity solution to both the modified and original HJB equations. We also investigate a relaxed control case, an exploratory control counterpart of our mathematical model, with the control variable belonging to a set of probability measures. Convergent, fully implicit finite difference methods to compute the viscosity solutions to the HJB equations are presented as well. These numerical methods exploit the characteristic direction of the Hamiltonians to avoid using any matrix inversions. Finally, a demonstrative application example of the proposed model to a fishery management problem is presented.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100484"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000542/pdfft?md5=b0edaf2877c28d46961498b04a0a4236&pid=1-s2.0-S2590037424000542-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We formulate an optimal control problem of resource extraction, where a decision maker with sustainability concern dynamically controls the extraction rate. We assume harvesting to increase profit and incur a risk of resource depletion and aim to resolve sustainability concerns. The optimality equation of the control problem is the Hamilton–Jacobi–Bellman (HJB) equation with an unbounded Hamiltonian. A regularization technique to bound the Hamiltonian is proposed to prove the existence of a unique viscosity solution to both the modified and original HJB equations. We also investigate a relaxed control case, an exploratory control counterpart of our mathematical model, with the control variable belonging to a set of probability measures. Convergent, fully implicit finite difference methods to compute the viscosity solutions to the HJB equations are presented as well. These numerical methods exploit the characteristic direction of the Hamiltonians to avoid using any matrix inversions. Finally, a demonstrative application example of the proposed model to a fishery management problem is presented.

考虑可持续性的常规和探索性资源开采模式
我们提出了一个资源开采的最优控制问题,在这个问题中,决策者出于可持续发展的考虑,动态地控制开采率。我们假定采掘会增加利润,并带来资源枯竭的风险,目的是解决可持续性问题。控制问题的最优化方程是汉密尔顿-雅各比-贝尔曼(HJB)方程,其中的汉密尔顿无约束。我们提出了一种约束哈密顿的正则化技术,以证明修改后的 HJB 方程和原始 HJB 方程都存在唯一的粘性解。我们还研究了一种宽松控制情况,即我们数学模型的探索性控制对应情况,控制变量属于一组概率度量。我们还介绍了计算 HJB 方程粘度解的收敛全隐式有限差分方法。这些数值方法利用了哈密顿的特征方向,避免了任何矩阵反演。最后,还介绍了所提模型在渔业管理问题上的一个示范应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信