Thermoelectric properties of low thermal conductivity half Heuslers TiXPb (X = Ni, Pd, Pt): A first principles investigation

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Thermoelectric properties of low thermal conductivity half Heuslers TiXPb (X = Ni, Pd, Pt): A first principles investigation","authors":"","doi":"10.1016/j.commatsci.2024.113250","DOIUrl":null,"url":null,"abstract":"<div><p>Semiconducting half-Heusler alloys are potential candidates for thermoelectric generators operational at high temperatures. In this work, the stability, electronic, and thermoelectric properties of 18 valence electron TiXPb (X<span><math><mo>=</mo></math></span>Ni, Pd, Pt) compounds are investigated using density functional theory and semi-classical Boltzmann transport theory. The compounds are both thermodynamically and dynamically stable. We find them to be semiconductors with indirect band gaps lying between 0.32−0.64 eV. Our calculations show that from thermoelectric performance perspective electrons exhibit better transport properties than holes. A combination of large power factor and low lattice thermal conductivity results in <span><math><mrow><mi>z</mi><mi>T</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> in all the materials. Our calculations predict that amongst the three compounds, TiPtPb have a maximum value of <span><math><mrow><mi>z</mi><mi>T</mi></mrow></math></span> for both electrons and holes. In this material our calculation yields a maximum <span><math><mrow><mi>z</mi><mi>T</mi></mrow></math></span> of 2.22 at 900 K for n-type doping at a doping concentration of 9.46 × <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>20</mn></mrow></msup></mrow></math></span> <span><math><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></math></span> and 1.80 at 900 K for p-type doping at a doping concentration of 4.51 × <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>20</mn></mrow></msup></mrow></math></span> <span><math><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624004713","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Semiconducting half-Heusler alloys are potential candidates for thermoelectric generators operational at high temperatures. In this work, the stability, electronic, and thermoelectric properties of 18 valence electron TiXPb (X=Ni, Pd, Pt) compounds are investigated using density functional theory and semi-classical Boltzmann transport theory. The compounds are both thermodynamically and dynamically stable. We find them to be semiconductors with indirect band gaps lying between 0.32−0.64 eV. Our calculations show that from thermoelectric performance perspective electrons exhibit better transport properties than holes. A combination of large power factor and low lattice thermal conductivity results in zT>1 in all the materials. Our calculations predict that amongst the three compounds, TiPtPb have a maximum value of zT for both electrons and holes. In this material our calculation yields a maximum zT of 2.22 at 900 K for n-type doping at a doping concentration of 9.46 × 1020 cm3 and 1.80 at 900 K for p-type doping at a doping concentration of 4.51 × 1020 cm3.

Abstract Image

低热导率半 Heuslers TiXPb(X = Ni、Pd、Pt)的热电特性:第一原理研究
半导体半豪斯勒合金是在高温下运行的热电发电机的潜在候选材料。在这项研究中,利用密度泛函理论和半经典玻尔兹曼输运理论研究了 18 价电子 TiXPb(X=Ni、Pd、Pt)化合物的稳定性、电子和热电特性。这些化合物在热力学和动力学上都很稳定。我们发现它们是间接带隙介于 0.32-0.64 eV 之间的半导体。我们的计算表明,从热电性能的角度来看,电子比空穴具有更好的传输特性。大功率因数和低晶格热导率的结合使所有材料的 zT>1 值都达到了 1。我们的计算结果预测,在这三种化合物中,TiPtPb 的电子和空穴的 zT 值最大。在这种材料中,当 n 型掺杂浓度为 9.46 × 1020 cm-3 时,我们的计算得出 900 K 时的最大 zT 值为 2.22;当 p 型掺杂浓度为 4.51 × 1020 cm-3 时,我们的计算得出 900 K 时的最大 zT 值为 1.80。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信