Next-order balanced model captures submesoscale physics and statistics

Ryan Shìjié Dù, K. Shafer Smith, Oliver Bühler
{"title":"Next-order balanced model captures submesoscale physics and statistics","authors":"Ryan Shìjié Dù, K. Shafer Smith, Oliver Bühler","doi":"arxiv-2408.03422","DOIUrl":null,"url":null,"abstract":"Using nonlinear simulations in two settings, we demonstrate that\nQG$^\\mathrm{+1}$, a potential-vorticity (PV) based next-order-in-Rossby\nbalanced model, captures several aspects of ocean submesoscale physics. In\nforced-dissipative 3D simulations under baroclinically unstable Eady-type\nbackground states, the statistical equilibrium turbulence exhibits long\ncyclonic tails and a plethora of rapidly-intensifying ageostrophic fronts.\nDespite that the model requires setting an explicit, small value for the fixed\nscaling Rossby number, the emergent flows are nevertheless characterized by\n$O(f)$ vorticity and convergence, as observed in upper-ocean submesoscale\nflows. Simulations of QG$^\\mathrm{+1}$ under the classic strain-induced\nfrontogenesis set-up show realistic frontal asymmetry and a finite time\nblow-up, quantitatively comparable to simulations of the semigeostrophic\nequations. The inversions in the QG$^\\mathrm{+1}$ model are straightforward\nelliptic problems, allowing for the reconstruction of all flow fields from the\nPV and surface buoyancy, while avoiding the semigeostrophic coordinate\ntransformation. Together, these results suggest QG$^\\mathrm{+1}$ as a useful\ntool for studying upper-ocean submesoscale dynamics.","PeriodicalId":501270,"journal":{"name":"arXiv - PHYS - Geophysics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using nonlinear simulations in two settings, we demonstrate that QG$^\mathrm{+1}$, a potential-vorticity (PV) based next-order-in-Rossby balanced model, captures several aspects of ocean submesoscale physics. In forced-dissipative 3D simulations under baroclinically unstable Eady-type background states, the statistical equilibrium turbulence exhibits long cyclonic tails and a plethora of rapidly-intensifying ageostrophic fronts. Despite that the model requires setting an explicit, small value for the fixed scaling Rossby number, the emergent flows are nevertheless characterized by $O(f)$ vorticity and convergence, as observed in upper-ocean submesoscale flows. Simulations of QG$^\mathrm{+1}$ under the classic strain-induced frontogenesis set-up show realistic frontal asymmetry and a finite time blow-up, quantitatively comparable to simulations of the semigeostrophic equations. The inversions in the QG$^\mathrm{+1}$ model are straightforward elliptic problems, allowing for the reconstruction of all flow fields from the PV and surface buoyancy, while avoiding the semigeostrophic coordinate transformation. Together, these results suggest QG$^\mathrm{+1}$ as a useful tool for studying upper-ocean submesoscale dynamics.
下一阶平衡模型捕捉次主题尺度物理和统计信息
通过在两种环境下进行非线性模拟,我们证明了基于势涡度(PV)的下一阶罗斯比平衡模型 QG$^\mathrm{+1}$ 能够捕捉海洋次主题尺度物理学的多个方面。尽管该模型需要为固定尺度的罗斯比数设定一个明确的小值,但出现的流体仍具有O(f)$涡度和收敛的特征,正如在上层海洋副旋涡尺度流体中所观察到的那样。在经典的应变诱导锋面发生设置下,QG$^mathrm{+1}$ 的模拟显示了逼真的锋面不对称和有限的上升时间,在数量上可与半地心吸力方程的模拟相媲美。QG$^mathrm{+1}$模型中的反演是直解问题,可以根据PV和表面浮力重建所有流场,同时避免了半重力坐标变换。这些结果表明,QG$^/mathrm{+1}$ 是研究上层海洋次主题尺度动力学的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信