Penalization of Galton–Watson Trees with Marked Vertices

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Abraham Romain, Boulal Sonia, Debs Pierre
{"title":"Penalization of Galton–Watson Trees with Marked Vertices","authors":"Abraham Romain, Boulal Sonia, Debs Pierre","doi":"10.1007/s10959-024-01364-y","DOIUrl":null,"url":null,"abstract":"<p>We consider a Galton–Watson tree where each node is marked independently of each other with a probability depending on its out-degree. Using a penalization method, we exhibit new martingales where the number of marks up to level <span>\\(n-1\\)</span> appears. Then, we use these martingales to define new probability measures via a Girsanov transformation and describe the distribution of the random trees under these new probabilities.\n</p>","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"2 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01364-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a Galton–Watson tree where each node is marked independently of each other with a probability depending on its out-degree. Using a penalization method, we exhibit new martingales where the number of marks up to level \(n-1\) appears. Then, we use these martingales to define new probability measures via a Girsanov transformation and describe the distribution of the random trees under these new probabilities.

Abstract Image

带标记顶点的加尔顿-沃森树的惩罚化
我们考虑了一棵加尔顿-沃森树,在这棵树上,每个节点都是独立标记的,其概率取决于节点的外度。利用惩罚方法,我们展示了新的马丁格尔,其中标记数达到了 \(n-1\)级。然后,我们通过吉尔萨诺夫(Girsanov)变换利用这些马氏定理定义了新的概率度量,并描述了这些新概率下随机树的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Theoretical Probability
Journal of Theoretical Probability 数学-统计学与概率论
CiteScore
1.50
自引率
12.50%
发文量
65
审稿时长
6-12 weeks
期刊介绍: Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信