Environment Complexity and Nash Equilibria in a Sequential Social Dilemma

Mustafa Yasir, Andrew Howes, Vasilios Mavroudis, Chris Hicks
{"title":"Environment Complexity and Nash Equilibria in a Sequential Social Dilemma","authors":"Mustafa Yasir, Andrew Howes, Vasilios Mavroudis, Chris Hicks","doi":"arxiv-2408.02148","DOIUrl":null,"url":null,"abstract":"Multi-agent reinforcement learning (MARL) methods, while effective in\nzero-sum or positive-sum games, often yield suboptimal outcomes in general-sum\ngames where cooperation is essential for achieving globally optimal outcomes.\nMatrix game social dilemmas, which abstract key aspects of general-sum\ninteractions, such as cooperation, risk, and trust, fail to model the temporal\nand spatial dynamics characteristic of real-world scenarios. In response, our\nstudy extends matrix game social dilemmas into more complex, higher-dimensional\nMARL environments. We adapt a gridworld implementation of the Stag Hunt dilemma\nto more closely match the decision-space of a one-shot matrix game while also\nintroducing variable environment complexity. Our findings indicate that as\ncomplexity increases, MARL agents trained in these environments converge to\nsuboptimal strategies, consistent with the risk-dominant Nash equilibria\nstrategies found in matrix games. Our work highlights the impact of environment\ncomplexity on achieving optimal outcomes in higher-dimensional game-theoretic\nMARL environments.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-agent reinforcement learning (MARL) methods, while effective in zero-sum or positive-sum games, often yield suboptimal outcomes in general-sum games where cooperation is essential for achieving globally optimal outcomes. Matrix game social dilemmas, which abstract key aspects of general-sum interactions, such as cooperation, risk, and trust, fail to model the temporal and spatial dynamics characteristic of real-world scenarios. In response, our study extends matrix game social dilemmas into more complex, higher-dimensional MARL environments. We adapt a gridworld implementation of the Stag Hunt dilemma to more closely match the decision-space of a one-shot matrix game while also introducing variable environment complexity. Our findings indicate that as complexity increases, MARL agents trained in these environments converge to suboptimal strategies, consistent with the risk-dominant Nash equilibria strategies found in matrix games. Our work highlights the impact of environment complexity on achieving optimal outcomes in higher-dimensional game-theoretic MARL environments.
连续社会困境中的环境复杂性和纳什均衡点
多代理强化学习(MARL)方法虽然在零和博弈或正和博弈中有效,但在一般和博弈中却经常产生次优结果,而在一般和博弈中,合作对于实现全局最优结果至关重要。矩阵博弈社交困境抽象了一般和互动的关键方面,如合作、风险和信任,但却无法模拟现实世界场景中特有的时间和空间动态。为此,我们的研究将矩阵博弈社交困境扩展到了更复杂、更高维度的 MARL 环境中。我们调整了 "雄鹿狩猎 "困境的网格世界实现,使其更接近于一击矩阵博弈的决策空间,同时还引入了可变的环境复杂度。我们的研究结果表明,随着复杂度的增加,在这些环境中训练的 MARL 代理会趋同于次优策略,这与矩阵博弈中发现的风险主导型纳什均衡策略是一致的。我们的研究凸显了环境复杂度对在高维博弈理论MARL环境中实现最优结果的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信