Performative Prediction on Games and Mechanism Design

António Góis, Mehrnaz Mofakhami, Fernando P. Santos, Simon Lacoste-Julien, Gauthier Gidel
{"title":"Performative Prediction on Games and Mechanism Design","authors":"António Góis, Mehrnaz Mofakhami, Fernando P. Santos, Simon Lacoste-Julien, Gauthier Gidel","doi":"arxiv-2408.05146","DOIUrl":null,"url":null,"abstract":"Predictions often influence the reality which they aim to predict, an effect\nknown as performativity. Existing work focuses on accuracy maximization under\nthis effect, but model deployment may have important unintended impacts,\nespecially in multiagent scenarios. In this work, we investigate performative\nprediction in a concrete game-theoretic setting where social welfare is an\nalternative objective to accuracy maximization. We explore a collective risk\ndilemma scenario where maximising accuracy can negatively impact social\nwelfare, when predicting collective behaviours. By assuming knowledge of a\nBayesian agent behavior model, we then show how to achieve better trade-offs\nand use them for mechanism design.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"119 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predictions often influence the reality which they aim to predict, an effect known as performativity. Existing work focuses on accuracy maximization under this effect, but model deployment may have important unintended impacts, especially in multiagent scenarios. In this work, we investigate performative prediction in a concrete game-theoretic setting where social welfare is an alternative objective to accuracy maximization. We explore a collective risk dilemma scenario where maximising accuracy can negatively impact social welfare, when predicting collective behaviours. By assuming knowledge of a Bayesian agent behavior model, we then show how to achieve better trade-offs and use them for mechanism design.
关于游戏和机制设计的表演性预测
预测往往会影响其旨在预测的现实,这种效应被称为 "执行效应"。现有研究主要关注在这种效应下的准确性最大化,但模型部署可能会产生意想不到的重要影响,尤其是在多代理场景中。在这项工作中,我们研究了具体博弈论环境下的执行预测,在这种环境下,社会福利是准确性最大化的替代目标。我们探索了一种集体风险困境情景,在这种情景下,预测集体行为时,准确率最大化可能会对社会福利产生负面影响。通过假设贝叶斯代理行为模型的知识,我们展示了如何实现更好的权衡,并将其用于机制设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信