{"title":"The Tropical Non-Properness Set of a Polynomial Map","authors":"Boulos El Hilany","doi":"10.1007/s00454-024-00684-4","DOIUrl":null,"url":null,"abstract":"<p>We study some discrete invariants of Newton non-degenerate polynomial maps <span>\\(f: {\\mathbb {K}}^n \\rightarrow {\\mathbb {K}}^n\\)</span> defined over an algebraically closed field of Puiseux series <span>\\({\\mathbb {K}}\\)</span>, equipped with a non-trivial valuation. It is known that the set <span>\\({\\mathcal {S}}(f)\\)</span> of points at which <i>f</i> is not finite forms an algebraic hypersurface in <span>\\({\\mathbb {K}}^n\\)</span>. The coordinate-wise valuation of <span>\\({\\mathcal {S}}(f)\\cap ({\\mathbb {K}}^*)^n\\)</span> is a piecewise-linear object in <span>\\({\\mathbb {R}}^n\\)</span>, which we call the tropical non-properness set of <i>f</i>. We show that the tropical polynomial map corresponding to <i>f</i> has fibers satisfying a particular combinatorial degeneracy condition exactly over points in the tropical non-properness set of <i>f</i>. We then use this description to outline a polyhedral method for computing this set, and to recover the fan dual to the Newton polytope of the set at which a complex polynomial map is not finite. The proofs rely on classical correspondence and structural results from tropical geometry, combined with a new description of <span>\\({\\mathcal {S}}(f)\\)</span> in terms of multivariate resultants.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00684-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We study some discrete invariants of Newton non-degenerate polynomial maps \(f: {\mathbb {K}}^n \rightarrow {\mathbb {K}}^n\) defined over an algebraically closed field of Puiseux series \({\mathbb {K}}\), equipped with a non-trivial valuation. It is known that the set \({\mathcal {S}}(f)\) of points at which f is not finite forms an algebraic hypersurface in \({\mathbb {K}}^n\). The coordinate-wise valuation of \({\mathcal {S}}(f)\cap ({\mathbb {K}}^*)^n\) is a piecewise-linear object in \({\mathbb {R}}^n\), which we call the tropical non-properness set of f. We show that the tropical polynomial map corresponding to f has fibers satisfying a particular combinatorial degeneracy condition exactly over points in the tropical non-properness set of f. We then use this description to outline a polyhedral method for computing this set, and to recover the fan dual to the Newton polytope of the set at which a complex polynomial map is not finite. The proofs rely on classical correspondence and structural results from tropical geometry, combined with a new description of \({\mathcal {S}}(f)\) in terms of multivariate resultants.