Towards SLO-Optimized LLM Serving via Automatic Inference Engine Tuning

Ke Cheng, Zhi Wang, Wen Hu, Tiannuo Yang, Jianguo Li, Sheng Zhang
{"title":"Towards SLO-Optimized LLM Serving via Automatic Inference Engine Tuning","authors":"Ke Cheng, Zhi Wang, Wen Hu, Tiannuo Yang, Jianguo Li, Sheng Zhang","doi":"arxiv-2408.04323","DOIUrl":null,"url":null,"abstract":"A service-level objective (SLO) is a target performance metric of service\nthat cloud vendors aim to ensure. Delivering optimized SLOs can enhance user\nsatisfaction and improve the competitiveness of cloud vendors. As large\nlanguage models (LLMs) are gaining increasing popularity across various fields,\nit is of great significance to optimize SLOs for LLM inference services. In\nthis paper, we observe that adjusting the parameters of LLM inference engines\ncan improve service performance, and the optimal parameter configurations of\ndifferent services are different. Therefore, we propose SCOOT, an automatic\nperformance tuning system to optimize SLOs for each LLM inference service by\ntuning the parameters of the inference engine. We first propose a generalized\nformulation of the tuning problem to handle various objectives and constraints\nbetween parameters, and SCOOT exploits the Bayesian optimization (BO) technique\nto resolve the problem via exploration and exploitation. Moreover, SCOOT adopts\na random forest to learn hidden constraints during the tuning process to\nmitigate invalid exploration. To improve the tuning efficiency, SCOOT utilizes\nthe parallel suggestion to accelerate the tuning process. Extensive experiments\ndemonstrate that SCOOT can significantly outperform existing tuning techniques\nin SLO optimization while greatly improving the tuning efficiency.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"184 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A service-level objective (SLO) is a target performance metric of service that cloud vendors aim to ensure. Delivering optimized SLOs can enhance user satisfaction and improve the competitiveness of cloud vendors. As large language models (LLMs) are gaining increasing popularity across various fields, it is of great significance to optimize SLOs for LLM inference services. In this paper, we observe that adjusting the parameters of LLM inference engines can improve service performance, and the optimal parameter configurations of different services are different. Therefore, we propose SCOOT, an automatic performance tuning system to optimize SLOs for each LLM inference service by tuning the parameters of the inference engine. We first propose a generalized formulation of the tuning problem to handle various objectives and constraints between parameters, and SCOOT exploits the Bayesian optimization (BO) technique to resolve the problem via exploration and exploitation. Moreover, SCOOT adopts a random forest to learn hidden constraints during the tuning process to mitigate invalid exploration. To improve the tuning efficiency, SCOOT utilizes the parallel suggestion to accelerate the tuning process. Extensive experiments demonstrate that SCOOT can significantly outperform existing tuning techniques in SLO optimization while greatly improving the tuning efficiency.
通过自动推理引擎调整实现 SLO 优化的 LLM 服务
服务级目标(SLO)是云计算厂商旨在确保实现的服务性能指标。提供优化的 SLO 可以提高用户满意度,增强云厂商的竞争力。随着大型语言模型(LLM)在各个领域的普及,优化 LLM 推断服务的 SLO 具有重要意义。在本文中,我们发现调整 LLM 推理引擎的参数可以提高服务性能,而不同服务的最优参数配置是不同的。因此,我们提出了自动性能调优系统 SCOOT,通过调优推理引擎的参数来优化每个 LLM 推理服务的 SLO。我们首先提出了调整问题的广义表述,以处理各种目标和参数之间的约束,然后 SCOOT 利用贝叶斯优化(BO)技术,通过探索和利用来解决问题。此外,SCOOT 还采用随机森林来学习调优过程中的隐藏约束,以避免无效探索。为了提高调整效率,SCOOT 利用并行建议来加速调整过程。广泛的实验证明,SCOOT 在 SLO 优化中的表现明显优于现有的调优技术,同时极大地提高了调优效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信