Doubly alternating words in the positive part of $U_q(\widehat{\mathfrak{sl}}_2)$

Chenwei Ruan
{"title":"Doubly alternating words in the positive part of $U_q(\\widehat{\\mathfrak{sl}}_2)$","authors":"Chenwei Ruan","doi":"arxiv-2408.02633","DOIUrl":null,"url":null,"abstract":"This paper is about the positive part $U_q^+$ of the $q$-deformed enveloping\nalgebra $U_q(\\widehat{\\mathfrak{sl}}_2)$. The algebra $U_q^+$ admits an\nembedding, due to Rosso, into a $q$-shuffle algebra $\\mathbb{V}$. The\nunderlying vector space of $\\mathbb{V}$ is the free algebra on two generators\n$x,y$. Therefore, the algebra $\\mathbb{V}$ has a basis consisting of the words\nin $x,y$. Let $U$ denote the image of $U_q^+$ under the Rosso embedding. In our\nfirst main result, we find all the words in $x,y$ that are contained in $U$.\nOne type of solution is called alternating. The alternating words have been\nstudied by Terwilliger. There is another type of solution, which we call doubly\nalternating. In our second main result, we display many commutator relations\ninvolving the doubly alternating words. In our third main result, we describe\nhow the doubly alternating words are related to the alternating words.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is about the positive part $U_q^+$ of the $q$-deformed enveloping algebra $U_q(\widehat{\mathfrak{sl}}_2)$. The algebra $U_q^+$ admits an embedding, due to Rosso, into a $q$-shuffle algebra $\mathbb{V}$. The underlying vector space of $\mathbb{V}$ is the free algebra on two generators $x,y$. Therefore, the algebra $\mathbb{V}$ has a basis consisting of the words in $x,y$. Let $U$ denote the image of $U_q^+$ under the Rosso embedding. In our first main result, we find all the words in $x,y$ that are contained in $U$. One type of solution is called alternating. The alternating words have been studied by Terwilliger. There is another type of solution, which we call doubly alternating. In our second main result, we display many commutator relations involving the doubly alternating words. In our third main result, we describe how the doubly alternating words are related to the alternating words.
$U_q(widehat\{mathfrak{sl}}_2)$正部分中的双交替词
本文是关于 $q$ 变形包络代数 $U_q(\widehat\mathfrak{sl}}_2)$ 的正部分 $U_q^+$。该代数$U_q^+$允许嵌入到$q$-shuffle代数$\mathbb{V}$中。$\mathbb{V}$ 的底层向量空间是关于两个发电机$x, y$ 的自由代数。因此,$\mathbb{V}$代数有一个由$x,y$中的词组成的基。让 $U$ 表示 $U_q^+$ 在罗索嵌入下的图像。在我们的第一个主要结果中,我们找到了$x,y$中包含在$U$中的所有词。特尔维利格已经研究过交替词。还有一种解,我们称之为双交替解。在我们的第二个主要结果中,我们展示了许多涉及双交替词的换元关系。在第三个主要结果中,我们描述了双交替词与交替词的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信