Rationality of Lorentzian Lattice CFTs And The Associated Modular Tensor Category

Ranveer Kumar Singh, Madhav Sinha, Runkai Tao
{"title":"Rationality of Lorentzian Lattice CFTs And The Associated Modular Tensor Category","authors":"Ranveer Kumar Singh, Madhav Sinha, Runkai Tao","doi":"arxiv-2408.02744","DOIUrl":null,"url":null,"abstract":"We discuss the rationality of Lorentzian lattice conformal field theory\n(LLCFT) recently constructed in arXiv:2312.16296 and obtain equivalent\ncharacterizations of rationality generalising Wendland's rational Narain CFT\ncharacterization. We then describe the construction of a modular tensor\ncategory (MTC) associated to rational LLCFTs. We explicitly construct the\nmodular data and braiding and fusing matrices for the MTC. As a concrete\nexample, we show that the LLCFT based on a certain even, self-dual Lorentzian\nlattice of signature $(m,n)$ with $m$ even realises the $D(m\\bmod 8)$ level 1\nKac-Moody MTC.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss the rationality of Lorentzian lattice conformal field theory (LLCFT) recently constructed in arXiv:2312.16296 and obtain equivalent characterizations of rationality generalising Wendland's rational Narain CFT characterization. We then describe the construction of a modular tensor category (MTC) associated to rational LLCFTs. We explicitly construct the modular data and braiding and fusing matrices for the MTC. As a concrete example, we show that the LLCFT based on a certain even, self-dual Lorentzian lattice of signature $(m,n)$ with $m$ even realises the $D(m\bmod 8)$ level 1 Kac-Moody MTC.
洛伦兹晶格 CFT 的合理性及相关的模态张量类别
我们讨论了最近在 arXiv:2312.16296 中构建的洛伦兹晶格共形场论(LLCFT)的合理性,并得到了等效的合理性描述,概括了温德兰的合理纳兰 CFT 描述。然后,我们描述了与有理 LLCFT 相关的模块张量类别(MTC)的构造。我们为 MTC 明确地构造了模块数据以及编织矩阵和融合矩阵。作为一个具体例子,我们展示了基于某个偶数、自偶洛伦兹晶格的LLCFT,其签名为$(m,n)$,其中$m$为偶数,实现了$D(m\bmod 8)$级1Kac-Moody MTC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信