{"title":"Nonlinear system identification via sparse Bayesian regression based on collaborative neurodynamic optimization","authors":"Alexey Okunev, Evgeny Burnaev","doi":"10.1515/jiip-2023-0077","DOIUrl":null,"url":null,"abstract":"Sparse identification of nonlinear dynamics is a popular approach to system identification. In this approach system identification is reformulated as a sparse regression problem, and the use of a good sparse regression method is crucial. Sparse Bayesian learning based on collaborative neurodynamic optimization is a recent method that consistently produces high-quality solutions. In this article, we extensively assess how this method performs for ordinary differential equation identification. We find that it works very well compared with sparse regression algorithms currently used for this task in terms of the tradeoff between the approximation accuracy and the complexity of the identified system. We also propose a way to substantially reduce the computational complexity of this algorithm compared with its original implementation, thus making it even more practical.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"5 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2023-0077","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Sparse identification of nonlinear dynamics is a popular approach to system identification. In this approach system identification is reformulated as a sparse regression problem, and the use of a good sparse regression method is crucial. Sparse Bayesian learning based on collaborative neurodynamic optimization is a recent method that consistently produces high-quality solutions. In this article, we extensively assess how this method performs for ordinary differential equation identification. We find that it works very well compared with sparse regression algorithms currently used for this task in terms of the tradeoff between the approximation accuracy and the complexity of the identified system. We also propose a way to substantially reduce the computational complexity of this algorithm compared with its original implementation, thus making it even more practical.
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography