Dinh Nho Hào, Nguyen Trung Thành, Nguyen Van Duc, Nguyen Van Thang
{"title":"A coefficient identification problem for a system of advection-diffusion-reaction equations in water quality modeling","authors":"Dinh Nho Hào, Nguyen Trung Thành, Nguyen Van Duc, Nguyen Van Thang","doi":"10.1515/jiip-2024-0030","DOIUrl":null,"url":null,"abstract":"The inverse problem of reconstructing two space-varying coefficients in a system of one-dimensional (1-d) time-dependent advection-diffusion-reaction (ADR) equations is considered. The ADR system can be used as a water quality model which describes the evolution of the biochemical oxygen demand (BOD) and dissolved oxygen (DO) in a river or stream. The coefficients to be reconstructed represents the effect of the deoxygenation and superficial reaeration processes on the DO and BOD concentration in water. Hölder stability estimates for the coefficients of interest are established using the Carleman estimate technique.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"13 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2024-0030","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The inverse problem of reconstructing two space-varying coefficients in a system of one-dimensional (1-d) time-dependent advection-diffusion-reaction (ADR) equations is considered. The ADR system can be used as a water quality model which describes the evolution of the biochemical oxygen demand (BOD) and dissolved oxygen (DO) in a river or stream. The coefficients to be reconstructed represents the effect of the deoxygenation and superficial reaeration processes on the DO and BOD concentration in water. Hölder stability estimates for the coefficients of interest are established using the Carleman estimate technique.
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography