On the Parameterized Complexity of Bend-Minimum Orthogonal Planarity

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, Fabrizio Montecchiani, Giacomo Ortali
{"title":"On the Parameterized Complexity of Bend-Minimum Orthogonal Planarity","authors":"Emilio Di Giacomo,&nbsp;Walter Didimo,&nbsp;Giuseppe Liotta,&nbsp;Fabrizio Montecchiani,&nbsp;Giacomo Ortali","doi":"10.1007/s00453-024-01260-1","DOIUrl":null,"url":null,"abstract":"<div><p>Computing planar orthogonal drawings with the minimum number of bends is one of the most studied topics in Graph Drawing. The problem is known to be NP-hard, even when we want to test the existence of a rectilinear planar drawing, i.e., an orthogonal drawing without bends (Garg and Tamassia in SIAM J Comput 31(2):601–625, 2001). From the parameterized complexity perspective, the problem is fixed-parameter tractable when parameterized by the sum of three parameters: the number <i>b</i> of bends, the number <i>k</i> of vertices of degree at most two, and the treewidth <span>\\(\\textsf{tw}\\)</span> of the input graph (Di Giacomo et al. in J Comput Syst Sci 125:129–148, 2022). We improve this last result by showing that the problem remains fixed-parameter tractable when parameterized only by <span>\\(b+k\\)</span>. As a consequence, rectilinear planarity testing lies in FPT parameterized by the number of vertices of degree at most two. We also prove that our choice of parameters is minimal, as deciding if an orthogonal drawing with at most <i>b</i> bends exists is already NP-hard when <i>k</i> is zero (i.e., the problem is para-NP-hard parameterized in <i>k</i>); hence, there is neither an FPT nor an XP algorithm parameterized only by the parameter <i>k</i> (unless P = NP). In addition, we prove that the problem is W[1]-hard parameterized by <span>\\(k+\\textsf{tw}\\)</span>, complementing a recent result (Jansen et al. in Upward and orthogonal planarity are W[1]-hard parameterized by treewidth. CoRR, abs/2309.01264, 2023; in: Bekos MA, Chimani M (eds) Graph Drawing and Network Visualization, vol 14466, Springer, Cham, pp 203–217, 2023) that shows W[1]-hardness for the parameterization <span>\\(b+\\textsf{tw}\\)</span>. As a consequence, we are able to trace a clear parameterized tractability landscape for the bend-minimum orthogonal planarity problem with respect to the three parameters <i>b</i>, <i>k</i>, and <span>\\(\\textsf{tw}\\)</span>.</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"86 10","pages":"3231 - 3251"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00453-024-01260-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-024-01260-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Computing planar orthogonal drawings with the minimum number of bends is one of the most studied topics in Graph Drawing. The problem is known to be NP-hard, even when we want to test the existence of a rectilinear planar drawing, i.e., an orthogonal drawing without bends (Garg and Tamassia in SIAM J Comput 31(2):601–625, 2001). From the parameterized complexity perspective, the problem is fixed-parameter tractable when parameterized by the sum of three parameters: the number b of bends, the number k of vertices of degree at most two, and the treewidth \(\textsf{tw}\) of the input graph (Di Giacomo et al. in J Comput Syst Sci 125:129–148, 2022). We improve this last result by showing that the problem remains fixed-parameter tractable when parameterized only by \(b+k\). As a consequence, rectilinear planarity testing lies in FPT parameterized by the number of vertices of degree at most two. We also prove that our choice of parameters is minimal, as deciding if an orthogonal drawing with at most b bends exists is already NP-hard when k is zero (i.e., the problem is para-NP-hard parameterized in k); hence, there is neither an FPT nor an XP algorithm parameterized only by the parameter k (unless P = NP). In addition, we prove that the problem is W[1]-hard parameterized by \(k+\textsf{tw}\), complementing a recent result (Jansen et al. in Upward and orthogonal planarity are W[1]-hard parameterized by treewidth. CoRR, abs/2309.01264, 2023; in: Bekos MA, Chimani M (eds) Graph Drawing and Network Visualization, vol 14466, Springer, Cham, pp 203–217, 2023) that shows W[1]-hardness for the parameterization \(b+\textsf{tw}\). As a consequence, we are able to trace a clear parameterized tractability landscape for the bend-minimum orthogonal planarity problem with respect to the three parameters b, k, and \(\textsf{tw}\).

Abstract Image

论弯曲最小正交平面参数化复杂性
计算弯曲次数最少的平面正交图是图形绘制中研究最多的课题之一。众所周知,即使我们想测试是否存在直角平面图,即没有弯曲的正交图,这个问题也是 NP 难(Garg 和 Tamassia 在 SIAM J Comput 31(2):601-625, 2001 中)。从参数化复杂度的角度来看,当以三个参数之和为参数时,问题是固定参数可控的:弯曲数 b、阶数至多为 2 的顶点数 k 以及输入图的树宽(\textsf{tw}\)(Di Giacomo 等人在 J Comput Syst Sci 125:129-148, 2022 中)。我们改进了最后一个结果,证明当参数仅为 \(b+k\)时,问题仍然是固定参数可控的。因此,直角平面性检验属于以最多两个度的顶点数为参数的 FPT。我们还证明了我们对参数的选择是最小的,因为当 k 为零时,决定是否存在一个最多有 b 个弯曲的正交图形已经是 NP-困难的了(即该问题是以 k 为参数的准 NP-困难问题);因此,既不存在仅以参数 k 为参数的 FPT 算法,也不存在仅以参数 k 为参数的 XP 算法(除非 P = NP)。此外,我们证明了该问题是以\(k+\textsf{tw}\)为参数的 W[1]-hard,补充了最近的一个结果(Jansen 等人,在 Upward and orthogonal planarity are W[1]-hard parameterized by treewidth.CoRR, abs/2309.01264, 2023; in:Bekos MA, Chimani M (eds) Graph Drawing and Network Visualization, vol 14466, Springer, Cham, pp 203-217, 2023)中显示了参数化 \(b+\textsf{tw}\) 的 W[1]-hardness 性。因此,我们能够根据 b、k 和 (textsf{tw}\)这三个参数,为弯曲最小正交平面问题追踪出一个清晰的参数化可操作性图景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithmica
Algorithmica 工程技术-计算机:软件工程
CiteScore
2.80
自引率
9.10%
发文量
158
审稿时长
12 months
期刊介绍: Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential. Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming. In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信