Non-reversible lifts of reversible diffusion processes and relaxation times

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Andreas Eberle, Francis Lörler
{"title":"Non-reversible lifts of reversible diffusion processes and relaxation times","authors":"Andreas Eberle, Francis Lörler","doi":"10.1007/s00440-024-01308-x","DOIUrl":null,"url":null,"abstract":"<p>We propose a new concept of lifts of reversible diffusion processes and show that various well-known non-reversible Markov processes arising in applications are lifts in this sense of simple reversible diffusions. Furthermore, we introduce a concept of non-asymptotic relaxation times and show that these can at most be reduced by a square root through lifting, generalising a related result in discrete time. Finally, we demonstrate how the recently developed approach to quantitative hypocoercivity based on space–time Poincaré inequalities can be rephrased and simplified in the language of lifts and how it can be applied to find optimal lifts.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"13 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01308-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new concept of lifts of reversible diffusion processes and show that various well-known non-reversible Markov processes arising in applications are lifts in this sense of simple reversible diffusions. Furthermore, we introduce a concept of non-asymptotic relaxation times and show that these can at most be reduced by a square root through lifting, generalising a related result in discrete time. Finally, we demonstrate how the recently developed approach to quantitative hypocoercivity based on space–time Poincaré inequalities can be rephrased and simplified in the language of lifts and how it can be applied to find optimal lifts.

Abstract Image

可逆扩散过程的非可逆提升和弛豫时间
我们提出了可逆扩散过程提升的新概念,并证明应用中出现的各种著名的非可逆马尔可夫过程都是这种意义上的简单可逆扩散过程的提升。此外,我们还引入了非渐近松弛时间的概念,并证明通过提升,松弛时间最多可以减少一个平方根,从而推广了离散时间的相关结果。最后,我们展示了如何用提升语言重新表述和简化最近开发的基于时空普恩卡雷不等式的定量低弛豫性方法,以及如何将其应用于寻找最优提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信