Ramsey Numbers of Multiple Copies of Graphs in a Component

IF 0.6 4区 数学 Q3 MATHEMATICS
Caixia Huang, Yuejian Peng, Yiran Zhang
{"title":"Ramsey Numbers of Multiple Copies of Graphs in a Component","authors":"Caixia Huang, Yuejian Peng, Yiran Zhang","doi":"10.1007/s00373-024-02821-5","DOIUrl":null,"url":null,"abstract":"<p>For a graph <i>G</i>, let <span>\\(R({\\mathcal {C}}(nG))\\)</span> denote the least <i>N</i> such that every 2-colouring of the edges of <span>\\(K_N\\)</span> contains a monochromatic copy of <i>nG</i> in a monochromatic connected subgraph, where <i>nG</i> denotes <i>n</i> vertex disjoint copies of <i>G</i>. Gyárfás and Sárközy (J Graph Theory 83(2):109–119, 2016) showed that <span>\\(R({\\mathcal {C}}(nK_3))=7n-2\\)</span> for <span>\\(n \\ge 2\\)</span>. After that, Roberts (Electron J Comb 24(1):8, 2017)showed that <span>\\(R({\\mathcal {C}}(nK_r))=(r^2-r+1)n-r+1\\)</span> for <span>\\(r \\ge 4\\)</span> and <span>\\(n \\ge R(K_r)\\)</span>, where <span>\\(R(K_r)\\)</span> is the Ramsey number of <span>\\(K_r\\)</span>. In this paper, we determine <span>\\(R({\\mathcal {C}}(nG))\\)</span> for all 4-vertex graphs <i>G</i> without isolated vertices.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02821-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph G, let \(R({\mathcal {C}}(nG))\) denote the least N such that every 2-colouring of the edges of \(K_N\) contains a monochromatic copy of nG in a monochromatic connected subgraph, where nG denotes n vertex disjoint copies of G. Gyárfás and Sárközy (J Graph Theory 83(2):109–119, 2016) showed that \(R({\mathcal {C}}(nK_3))=7n-2\) for \(n \ge 2\). After that, Roberts (Electron J Comb 24(1):8, 2017)showed that \(R({\mathcal {C}}(nK_r))=(r^2-r+1)n-r+1\) for \(r \ge 4\) and \(n \ge R(K_r)\), where \(R(K_r)\) is the Ramsey number of \(K_r\). In this paper, we determine \(R({\mathcal {C}}(nG))\) for all 4-vertex graphs G without isolated vertices.

Abstract Image

组件中多个图形副本的拉姆齐数
对于一个图 G,让 \(R({\mathcal {C}}(nG))\ 表示这样的最小 N,即 \(K_N\) 的边的每一个 2 色包含一个单色连接子图中 nG 的单色副本,其中 nG 表示 G 的 n 个顶点不相交副本。Gyárfás 和 Sárközy (J Graph Theory 83(2):109-119, 2016) 证明了 \(R({mathcal {C}}(nK_3))=7n-2\) for \(n \ge 2\).之后,罗伯茨(Electron J Comb 24(1):8, 2017)证明了对于\(r \ge 4\) 和\(n \ge R(K_r)\),\(R({\mathcal {C}}(nK_r))=(r^2-r+1)n-r+1\) ,其中\(R(K_r)\)是\(K_r\)的拉姆齐数。在本文中,我们确定了所有没有孤立顶点的 4 顶点图 G 的 \(R({\mathcal {C}}(nG))\) 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信