Lithographically patternable SU-8/Graphene nanocomposite based strain sensors for soft-MEMS applications

IF 2.4 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Faizan Tariq Beigh, Nadeem Tariq Beigh and Dhiman Mallick
{"title":"Lithographically patternable SU-8/Graphene nanocomposite based strain sensors for soft-MEMS applications","authors":"Faizan Tariq Beigh, Nadeem Tariq Beigh and Dhiman Mallick","doi":"10.1088/1361-6439/ad690e","DOIUrl":null,"url":null,"abstract":"This paper presents an optimized, lithographically patternable SU-8/Graphene nanocomposite based piezoresistive strain sensor for localized, high-precision assessment, which marks a significant advancement in the field of soft-MEMS based technologies. The fabrication process involves the photolithography of a SU-8/Graphene nanocomposite with a minimum resolution of 50 μm, resulting in a material with excellent electrical conductivity and mechanical properties. Specifically, a 3% SU-8/Graphene composition was chosen to exceed the percolation threshold, enabling substantial changes in the resistance and facilitating photopatternability. The sensor exhibited exceptional performance characteristics, including a rapid response time of 0.1 s and a wide bending range from 0° to 60°. Notably, it demonstrated a remarkable %ΔR/R of 19.21, indicating its superior sensing capability. Such high sensitivity is crucial for applications that require precise, localized measurements, such as biomedical engineering, sports science, and smart healthcare.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"12 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad690e","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an optimized, lithographically patternable SU-8/Graphene nanocomposite based piezoresistive strain sensor for localized, high-precision assessment, which marks a significant advancement in the field of soft-MEMS based technologies. The fabrication process involves the photolithography of a SU-8/Graphene nanocomposite with a minimum resolution of 50 μm, resulting in a material with excellent electrical conductivity and mechanical properties. Specifically, a 3% SU-8/Graphene composition was chosen to exceed the percolation threshold, enabling substantial changes in the resistance and facilitating photopatternability. The sensor exhibited exceptional performance characteristics, including a rapid response time of 0.1 s and a wide bending range from 0° to 60°. Notably, it demonstrated a remarkable %ΔR/R of 19.21, indicating its superior sensing capability. Such high sensitivity is crucial for applications that require precise, localized measurements, such as biomedical engineering, sports science, and smart healthcare.
基于可光刻图案化 SU-8/石墨烯纳米复合材料的应变传感器,用于软-MEMS 应用
本文介绍了一种优化的、可光刻图案化的 SU-8/Graphene 纳米复合材料压阻应变传感器,用于局部高精度评估,标志着基于软-MEMS 技术领域的重大进展。制造工艺包括对 SU-8/Graphene 纳米复合材料进行光刻,最小分辨率为 50 μm,从而获得了一种具有优异导电性和机械性能的材料。具体来说,选择了 3% 的 SU-8/Graphene 成分,使其超过了渗滤阈值,从而使电阻发生了重大变化,并提高了光可塑性。该传感器表现出卓越的性能特点,包括 0.1 秒的快速响应时间和 0° 至 60° 的宽弯曲范围。值得一提的是,它的 %ΔR/R 值高达 19.21,显示了其卓越的传感能力。如此高的灵敏度对于生物医学工程、体育科学和智能医疗保健等需要精确、局部测量的应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Micromechanics and Microengineering
Journal of Micromechanics and Microengineering 工程技术-材料科学:综合
CiteScore
4.50
自引率
4.30%
发文量
136
审稿时长
2.8 months
期刊介绍: Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data. The journal is focussed on all aspects of: -nano- and micro- mechanical systems -nano- and micro- electomechanical systems -nano- and micro- electrical and mechatronic systems -nano- and micro- engineering -nano- and micro- scale science Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering. Below are some examples of the topics that are included within the scope of the journal: -MEMS and NEMS: Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc. -Fabrication techniques and manufacturing: Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing. -Packaging and Integration technologies. -Materials, testing, and reliability. -Micro- and nano-fluidics: Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip. -Lab-on-a-chip and micro- and nano-total analysis systems. -Biomedical systems and devices: Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces. -Energy and power: Including power MEMS/NEMS, energy harvesters, actuators, microbatteries. -Electronics: Including flexible electronics, wearable electronics, interface electronics. -Optical systems. -Robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信