Representations of Real Numbers by Alternating Perron Series and Their Geometry

Mykola Moroz
{"title":"Representations of Real Numbers by Alternating Perron Series and Their Geometry","authors":"Mykola Moroz","doi":"arxiv-2408.01465","DOIUrl":null,"url":null,"abstract":"We consider the representation of real numbers by alternating Perron series\n($P^-$-representation), which is a generalization of representations of real\nnumbers by Ostrogradsky-Sierpi\\'nski-Pierce series (Pierce series), alternating\nSylvester series (second Ostrogradsky series), alternating L\\\"{u}roth series,\netc. Namely, we prove the basic topological and metric properties of\n$P^-$-representation and find the relationship between $P$-representation and\n$P^-$-representation in some measure theory problems.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the representation of real numbers by alternating Perron series ($P^-$-representation), which is a generalization of representations of real numbers by Ostrogradsky-Sierpi\'nski-Pierce series (Pierce series), alternating Sylvester series (second Ostrogradsky series), alternating L\"{u}roth series, etc. Namely, we prove the basic topological and metric properties of $P^-$-representation and find the relationship between $P$-representation and $P^-$-representation in some measure theory problems.
用交替佩伦数列表示实数及其几何学
我们考虑了交替佩伦数列($P^-$-representation)对实数的表示,它是对奥斯特洛夫斯基-西尔皮尔斯数列(皮尔斯数列)、交替西尔维斯特数列(第二奥斯特洛夫斯基数列)、交替洛斯数列等实数表示的概括。此外,我们还证明了$P^-$表示的基本拓扑和度量性质,并在一些度量论问题中发现了$P^-$表示与$P^-$表示之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信