Leo Scheller, Greta Maria Paola Giordano Attianese, Rocío Castellanos-Rueda, Raphaël B Di Roberto, Markus Barden, Melanie Triboulet, Sailan Shui, Elisabetta Cribioli, Anthony Marchand, Sandrine Georgeon, Hinrich Abken, Sai Reddy, Bruno E. Correia, Melita Irving
{"title":"Drug-controlled CAR-T cells through the regulation of cell-cell interactions","authors":"Leo Scheller, Greta Maria Paola Giordano Attianese, Rocío Castellanos-Rueda, Raphaël B Di Roberto, Markus Barden, Melanie Triboulet, Sailan Shui, Elisabetta Cribioli, Anthony Marchand, Sandrine Georgeon, Hinrich Abken, Sai Reddy, Bruno E. Correia, Melita Irving","doi":"10.1101/2024.08.06.606454","DOIUrl":null,"url":null,"abstract":"CAR T-cell therapy is constrained by on-target, off-tumor toxicities as well as cellular exhaustion due to chronic antigen exposure. CARs comprising small-molecule controlled switches can enhance both safety and therapeutic efficacy but are limited by the scarcity of non-immunogenic protein elements responsive to non-immunosuppressive, clinically approved drugs with favorable pharmacodynamics. Here, we combine rational design and library-based optimization of a protein-protein interaction (PPI) of human origin to develop venetoclax-controlled Drug-Regulated Off-switch PPI (DROP)-CARs. DROP-CARs enable dose-dependent release of the tumor-targeting scFv and consequent T-cell dissociation from the target tumor cell. Additionally, we present proof-of-concept for a dual DROP-CAR controlled by different small molecules, as well as for logic-gated synthetic receptors enabling STAT3 signaling. We demonstrate in vitro and in vivo function of DROP-CAR T cells and conclude that the approach holds promise for clinical application.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.06.606454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
CAR T-cell therapy is constrained by on-target, off-tumor toxicities as well as cellular exhaustion due to chronic antigen exposure. CARs comprising small-molecule controlled switches can enhance both safety and therapeutic efficacy but are limited by the scarcity of non-immunogenic protein elements responsive to non-immunosuppressive, clinically approved drugs with favorable pharmacodynamics. Here, we combine rational design and library-based optimization of a protein-protein interaction (PPI) of human origin to develop venetoclax-controlled Drug-Regulated Off-switch PPI (DROP)-CARs. DROP-CARs enable dose-dependent release of the tumor-targeting scFv and consequent T-cell dissociation from the target tumor cell. Additionally, we present proof-of-concept for a dual DROP-CAR controlled by different small molecules, as well as for logic-gated synthetic receptors enabling STAT3 signaling. We demonstrate in vitro and in vivo function of DROP-CAR T cells and conclude that the approach holds promise for clinical application.
CAR T 细胞疗法受到靶上、瘤外毒性以及长期抗原暴露导致的细胞衰竭的限制。由小分子可控开关组成的 CAR 可以提高安全性和疗效,但由于缺乏对非免疫抑制性、临床批准的药物有良好药效学反应的非免疫原性蛋白元素,因此受到限制。在这里,我们将人类蛋白-蛋白相互作用(PPI)的合理设计和基于文库的优化结合起来,开发出了由 Venetoclax 控制的药物调节关开关 PPI(DROP)-CARs。DROP-CARs 能使肿瘤靶向 scFv 按剂量释放,从而使 T 细胞与靶肿瘤细胞分离。此外,我们还展示了由不同小分子控制的双 DROP-CAR 概念验证,以及可实现 STAT3 信号传导的逻辑门控合成受体。我们展示了 DROP-CAR T 细胞的体外和体内功能,并得出结论:这种方法有望应用于临床。