Averaging Principle for McKean-Vlasov SDEs Driven by FBMs

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tongqi Zhang, Yong Xu, Lifang Feng, Bin Pei
{"title":"Averaging Principle for McKean-Vlasov SDEs Driven by FBMs","authors":"Tongqi Zhang, Yong Xu, Lifang Feng, Bin Pei","doi":"10.1007/s12346-024-01099-5","DOIUrl":null,"url":null,"abstract":"<p>This paper considers a class of mixed slow-fast McKean–Vlasov stochastic differential equations that contain the fractional Brownian motion with Hurst parameter <span>\\(H &gt; 1/2\\)</span> and the standard Brownian motion. Firstly, we prove an existence and uniqueness theorem for the mixed coupled system. Secondly, under suitable assumptions on the coefficients, using the approach of Khasminskii’s time discretization, we prove that the slow component strongly converges to the solution of the corresponding averaged equation in the mean square sense.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01099-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers a class of mixed slow-fast McKean–Vlasov stochastic differential equations that contain the fractional Brownian motion with Hurst parameter \(H > 1/2\) and the standard Brownian motion. Firstly, we prove an existence and uniqueness theorem for the mixed coupled system. Secondly, under suitable assumptions on the coefficients, using the approach of Khasminskii’s time discretization, we prove that the slow component strongly converges to the solution of the corresponding averaged equation in the mean square sense.

由 FBM 驱动的 McKean-Vlasov SDEs 的平均原理
本文研究了一类混合慢-快麦金-弗拉索夫随机微分方程,该方程包含具有赫斯特参数(H >1/2\)的分数布朗运动和标准布朗运动。首先,我们证明了混合耦合系统的存在性和唯一性定理。其次,在系数的适当假设下,利用哈明斯基时间离散化方法,我们证明慢速分量在均方意义上强烈收敛于相应平均方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信