Prescribed non-positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation

IF 0.7 4区 数学 Q2 MATHEMATICS
Romain Gicquaud
{"title":"Prescribed non-positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation","authors":"Romain Gicquaud","doi":"10.4310/cag.2023.v31.n8.a6","DOIUrl":null,"url":null,"abstract":"We study the prescribed scalar curvature problem, namely finding which function can be obtained as the scalar curvature of a metric in a given conformal class. We deal with the case of asymptotically hyperbolic manifolds and restrict ourselves to non positive prescribed scalar curvature. Following [$\\href{https://dx.doi.org/10.4310/CAG.2018.v26.n5.a5}{14}$, $\\href{https://doi.org/10.1090/S0002-9947-1995-1321588-5}{26}$], we obtain a necessary and sufficient condition on the zero set of the prescribed scalar curvature so that the problem admits a (unique) solution.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"27 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n8.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the prescribed scalar curvature problem, namely finding which function can be obtained as the scalar curvature of a metric in a given conformal class. We deal with the case of asymptotically hyperbolic manifolds and restrict ourselves to non positive prescribed scalar curvature. Following [$\href{https://dx.doi.org/10.4310/CAG.2018.v26.n5.a5}{14}$, $\href{https://doi.org/10.1090/S0002-9947-1995-1321588-5}{26}$], we obtain a necessary and sufficient condition on the zero set of the prescribed scalar curvature so that the problem admits a (unique) solution.
渐近双曲流形上的规定非正标量曲率与利希诺维奇方程的应用
我们研究的是规定标量曲率问题,即在给定的共形类中,找到哪个函数可以作为度量的标量曲率。我们处理的是渐近双曲流形的情况,并把自己限制在非正的规定标量曲率上。继[$\href{https://dx.doi.org/10.4310/CAG.2018.v26.n5.a5}{14}$, $\href{https://doi.org/10.1090/S0002-9947-1995-1321588-5}{26}$]之后,我们得到了关于规定标量曲率零集的必要条件和充分条件,这样问题就有了(唯一的)解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信